
Find the value of the expression $ -{{2}^{n}}{{C}_{0}}+\left( \dfrac{{{2}^{2}}}{2} \right)\left( ^{n}{{C}_{1}} \right)-\cdots +{{\left( -1 \right)}^{n+1}}\left( \dfrac{{{2}^{n+1}}}{r+1} \right)\left( ^{n}{{C}_{r}} \right) $
[a] 0 if n is even
[b] 0 if n is odd
[c] $ \dfrac{1}{n+1} $ if n is even
[d] $ \dfrac{1}{n+1} $ if n is odd.
Answer
602.7k+ views
Hint:Use the binomial theorem which states that the expansion of the binomial $ {{\left( x+y \right)}^{n}} $ is given by $ {{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{x}^{n-r}}{{y}^{r}}} $ . Replace x by 1 and y by -x . Integrate both sides within limits 0 and a. Finally, put a = 2 in the resulting expression and hence find the value of the given expression
Complete step-by-step answer:
We know that
$ {{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{x}^{n-r}}{{y}^{r}}} $
Replacing x by 1 and y by -x, we get
$ {{\left( 1-x \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}{{x}^{r}}} $
Integrating both sides with respect to x with the limite x =0 and x= a, we get
$ \int_{0}^{a}{{{\left( 1-x \right)}^{n}}}dx=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}}{{\left( -1 \right)}^{r}}\int_{0}^{a}{{{x}^{r}}dx} $
Hence, we have
\[\begin{align}
& \left. -\dfrac{{{\left( 1-x \right)}^{n+1}}}{n+1} \right|_{0}^{a}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}\left( \left. \dfrac{{{x}^{r+1}}}{r+1} \right|_{0}^{a} \right)} \\
& \Rightarrow \dfrac{1}{n+1}-\dfrac{{{\left( 1-a \right)}^{n+1}}}{n+1}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}\left( \dfrac{{{a}^{r+1}}}{r+1} \right)} \\
\end{align}\]
Put a =2, we get
$ \dfrac{1}{n+1}-\dfrac{{{\left( -1 \right)}^{n+1}}}{n+1}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}\left( \dfrac{{{2}^{r+1}}}{r+1} \right)} $
Multiplying both sides by -1, we get
$ \dfrac{{{\left( -1 \right)}^{n+1}}}{n+1}-\dfrac{1}{n+1}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r+1}}\left( \dfrac{{{2}^{r+1}}}{r+1} \right)} $
Writing the summation term in expanded form, we get
$ \dfrac{{{\left( -1 \right)}^{n+1}}}{n+1}-\dfrac{1}{n+1}=-{{2}^{n}}{{C}_{0}}+\left( \dfrac{{{2}^{2}}}{2} \right)\left( ^{n}{{C}_{1}} \right)-\cdots +{{\left( -1 \right)}^{n+1}}\left( \dfrac{{{2}^{n+1}}}{r+1} \right)\left( ^{n}{{C}_{r}} \right) $
Hence, we have
When n is odd $ {{\left( -1 \right)}^{n}}=-1 $
Hence, we have
$ {{\left( -1 \right)}^{n+1}}=1 $
Hence, we have
\[-{{2}^{n}}{{C}_{0}}+\left( \dfrac{{{2}^{2}}}{2} \right)\left( ^{n}{{C}_{1}} \right)-\cdots +{{\left( -1 \right)}^{n+1}}\left( \dfrac{{{2}^{n+1}}}{r+1} \right)\left( ^{n}{{C}_{r}} \right)=\dfrac{1}{n+1}-\dfrac{1}{n+1}=0\]
When n is even, we have $ {{\left( -1 \right)}^{n}}=1 $
Hence, we have
$ {{\left( -1 \right)}^{n+1}}=-1 $
Hence, we have
$ -{{2}^{n}}{{C}_{0}}+\left( \dfrac{{{2}^{2}}}{2} \right)\left( ^{n}{{C}_{1}} \right)-\cdots +{{\left( -1 \right)}^{n+1}}\left( \dfrac{{{2}^{n+1}}}{r+1} \right)\left( ^{n}{{C}_{r}} \right)=\dfrac{-1}{n+1}-\dfrac{1}{n+1}=\dfrac{-2}{n+1} $
Hence option [b] is the only correct answer.
Note: Verification:
We can verify the correctness of our solution by checking LHS = RHS for n = 1, 2
For n = 1, we have
$ LHS=-2{{\times }^{1}}{{C}_{0}}+\dfrac{{{2}^{2}}}{2}{{\times }^{1}}{{C}_{1}}=0 $
Also since 1 is odd, we have RHS = 0
True for n = 1.
For n = 2, we have
$ LHS=-2{{\times }^{2}}{{C}_{0}}+\dfrac{{{2}^{2}}}{2}{{\times }^{2}}{{C}_{1}}-\dfrac{{{2}^{3}}}{3}{{\times }^{2}}{{C}_{2}}=-2+4-\dfrac{8}{3}=\dfrac{-2}{3} $
Also, we have
$ RHS=\dfrac{-2}{2+1}=\dfrac{-2}{3} $
Hence, we have LHS = RHS
Hence our solution is verified to be correct.
[2] A student can make many calculation mistakes, especially in the signs and powers while solving this problem. Hence each should be checked at least twice.
Complete step-by-step answer:
We know that
$ {{\left( x+y \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{x}^{n-r}}{{y}^{r}}} $
Replacing x by 1 and y by -x, we get
$ {{\left( 1-x \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}{{x}^{r}}} $
Integrating both sides with respect to x with the limite x =0 and x= a, we get
$ \int_{0}^{a}{{{\left( 1-x \right)}^{n}}}dx=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}}{{\left( -1 \right)}^{r}}\int_{0}^{a}{{{x}^{r}}dx} $
Hence, we have
\[\begin{align}
& \left. -\dfrac{{{\left( 1-x \right)}^{n+1}}}{n+1} \right|_{0}^{a}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}\left( \left. \dfrac{{{x}^{r+1}}}{r+1} \right|_{0}^{a} \right)} \\
& \Rightarrow \dfrac{1}{n+1}-\dfrac{{{\left( 1-a \right)}^{n+1}}}{n+1}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}\left( \dfrac{{{a}^{r+1}}}{r+1} \right)} \\
\end{align}\]
Put a =2, we get
$ \dfrac{1}{n+1}-\dfrac{{{\left( -1 \right)}^{n+1}}}{n+1}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}\left( \dfrac{{{2}^{r+1}}}{r+1} \right)} $
Multiplying both sides by -1, we get
$ \dfrac{{{\left( -1 \right)}^{n+1}}}{n+1}-\dfrac{1}{n+1}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{\left( -1 \right)}^{r+1}}\left( \dfrac{{{2}^{r+1}}}{r+1} \right)} $
Writing the summation term in expanded form, we get
$ \dfrac{{{\left( -1 \right)}^{n+1}}}{n+1}-\dfrac{1}{n+1}=-{{2}^{n}}{{C}_{0}}+\left( \dfrac{{{2}^{2}}}{2} \right)\left( ^{n}{{C}_{1}} \right)-\cdots +{{\left( -1 \right)}^{n+1}}\left( \dfrac{{{2}^{n+1}}}{r+1} \right)\left( ^{n}{{C}_{r}} \right) $
Hence, we have
When n is odd $ {{\left( -1 \right)}^{n}}=-1 $
Hence, we have
$ {{\left( -1 \right)}^{n+1}}=1 $
Hence, we have
\[-{{2}^{n}}{{C}_{0}}+\left( \dfrac{{{2}^{2}}}{2} \right)\left( ^{n}{{C}_{1}} \right)-\cdots +{{\left( -1 \right)}^{n+1}}\left( \dfrac{{{2}^{n+1}}}{r+1} \right)\left( ^{n}{{C}_{r}} \right)=\dfrac{1}{n+1}-\dfrac{1}{n+1}=0\]
When n is even, we have $ {{\left( -1 \right)}^{n}}=1 $
Hence, we have
$ {{\left( -1 \right)}^{n+1}}=-1 $
Hence, we have
$ -{{2}^{n}}{{C}_{0}}+\left( \dfrac{{{2}^{2}}}{2} \right)\left( ^{n}{{C}_{1}} \right)-\cdots +{{\left( -1 \right)}^{n+1}}\left( \dfrac{{{2}^{n+1}}}{r+1} \right)\left( ^{n}{{C}_{r}} \right)=\dfrac{-1}{n+1}-\dfrac{1}{n+1}=\dfrac{-2}{n+1} $
Hence option [b] is the only correct answer.
Note: Verification:
We can verify the correctness of our solution by checking LHS = RHS for n = 1, 2
For n = 1, we have
$ LHS=-2{{\times }^{1}}{{C}_{0}}+\dfrac{{{2}^{2}}}{2}{{\times }^{1}}{{C}_{1}}=0 $
Also since 1 is odd, we have RHS = 0
True for n = 1.
For n = 2, we have
$ LHS=-2{{\times }^{2}}{{C}_{0}}+\dfrac{{{2}^{2}}}{2}{{\times }^{2}}{{C}_{1}}-\dfrac{{{2}^{3}}}{3}{{\times }^{2}}{{C}_{2}}=-2+4-\dfrac{8}{3}=\dfrac{-2}{3} $
Also, we have
$ RHS=\dfrac{-2}{2+1}=\dfrac{-2}{3} $
Hence, we have LHS = RHS
Hence our solution is verified to be correct.
[2] A student can make many calculation mistakes, especially in the signs and powers while solving this problem. Hence each should be checked at least twice.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

