
Find the value of \[tan\left( { - {{135}^ \circ }} \right)\] and \[\cot \left( { - {{135}^ \circ }} \right)\] along with the steps.
Answer
510.6k+ views
Hint:Using the property that the reciprocal of a tangent function is nothing but a cotangent function itself. As, we know the trigonometry identity that \[\tan ( - x) = - \tan x\]. We will also use the trigonometry identity \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]. We also know the inverse of \[\tan x = \dfrac{1}{{\cot x}}\]. And, we will use all the identities to find the value of tan(x) and then we will use the inverse of tan(x) to find the value of cot(x).
Complete step by step answer:
We know the trigonometry identity \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
We will use this identity for x = -x as,
\[\tan ( - x) = \dfrac{{\sin ( - x)}}{{\cos ( - x)}}\]
As, we know that, \[\sin ( - x) = - \sin (x)\]and \[\cos ( - x) = \cos (x)\]
\[\tan ( - x) = \dfrac{{ - \sin (x)}}{{\cos (x)}} \\
\Rightarrow \tan ( - x) = - \tan (x) \]
Thus, we use this identity to solve and get the required value.
Let, apply the trigonometry identity for\[\tan ( - {135^ \circ })\], we get,
\[\tan ( - {135^ \circ }) = - \tan ({135^ \circ })\]
Now we will split\[135 = 90 + 45\], we will get,
\[ \Rightarrow \tan ( - {135^ \circ }) = - \tan ({90^ \circ } + {45^ \circ })\]
We will apply the trigonometry identity that\[\tan ({90^ \circ } + x) = - \cot x\]
Here, \[x = {45^ \circ }\]then we will get,
\[ \Rightarrow \tan ( - {135^ \circ }) = - ( - \cot {45^ \circ })\]
\[ \Rightarrow \tan ( - {135^ \circ }) = \cot {45^ \circ }\]
We know that, \[\cot {45^ \circ } = 1\].
\[ \Rightarrow \tan ( - {135^ \circ }) = 1\]
Thus, the value of \[\tan ( - {135^ \circ }) = 1\].
Next, we will find the value of\[\cot ( - {135^ \circ })\] as below,
According to the trigonometry identity,
\[\tan ( - x) = \dfrac{1}{{\cot ( - x)}}\]
\[ \Rightarrow \cot ( - x) = \dfrac{1}{{\tan ( - x)}}\]
Let, \[x = {135^ \circ }\]
Then,
\[\cot ( - {135^ \circ }) = \dfrac{1}{{\tan ( - {{135}^ \circ })}}\]
\[ \Rightarrow \cot ( - {135^ \circ }) = \dfrac{1}{1}\]
\[ \Rightarrow \cot ( - {135^ \circ }) = 1\]
Thus, the value of \[\cot ( - {135^ \circ }) = 1\].
Hence, the value of \[\tan ( - {135^ \circ }) = 1\] and \[\cot ( - {135^ \circ }) = 1\].
Note: (1) Another method to solve,
\[\tan ( - {135^ \circ }) = \tan ({360^ \circ } - {135^ \circ }) \\
\Rightarrow \tan ( - {135^ \circ }) = \tan ({225^ \circ }) \]
Now,
\[\tan ({225^ \circ }) = \tan ({180^ \circ }) + \tan ({45^ \circ })\]
\[\Rightarrow \tan ({225^ \circ }) = \dfrac{{\tan ({{180}^ \circ }) + \tan ({{45}^ \circ })}}{{1 - \tan ({{180}^ \circ })\tan ({{45}^ \circ })}}\]
We know that \[\tan {45^ \circ } = 1\] and \[\tan {180^ \circ } = 0\], we will apply this and we will get,
\[\tan ( - {135^ \circ }) = \dfrac{{0 + 1}}{{1 + 0}}\]
\[\therefore \tan ( - {135^ \circ })= \dfrac{1}{1} = 1 \]
Thus, the value of \[\tan ( - {135^ \circ }) = 1\].
(2) Another Method: If we split 135 = 180-45, we
\[ \Rightarrow \tan ( - {135^ \circ }) = - \tan ({180^ \circ } - {45^ \circ })\]
\[\Rightarrow \tan ( - {135^ \circ }) = - \tan ({135^ \circ })\]
\[\Rightarrow \tan ( - {135^ \circ })= - \tan ({180^ \circ } - {45^ \circ })\]
As, we know that\[\tan ({180^ \circ } - x) = - \tan x\].
Here, \[x = {45^ \circ }\] and apply this, we will get,
\[\Rightarrow \tan ( - {135^ \circ }) = - ( - \tan {45^ \circ })\]
\[\Rightarrow \tan ( - {135^ \circ }) = - ( - 1)\]....................\[(\because \tan {45^ \circ } = 1)\]
\[ \therefore \tan ( - {135^ \circ })= 1\]
Thus, the value of \[\tan ( - {135^ \circ }) = 1\].
Complete step by step answer:
We know the trigonometry identity \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
We will use this identity for x = -x as,
\[\tan ( - x) = \dfrac{{\sin ( - x)}}{{\cos ( - x)}}\]
As, we know that, \[\sin ( - x) = - \sin (x)\]and \[\cos ( - x) = \cos (x)\]
\[\tan ( - x) = \dfrac{{ - \sin (x)}}{{\cos (x)}} \\
\Rightarrow \tan ( - x) = - \tan (x) \]
Thus, we use this identity to solve and get the required value.
Let, apply the trigonometry identity for\[\tan ( - {135^ \circ })\], we get,
\[\tan ( - {135^ \circ }) = - \tan ({135^ \circ })\]
Now we will split\[135 = 90 + 45\], we will get,
\[ \Rightarrow \tan ( - {135^ \circ }) = - \tan ({90^ \circ } + {45^ \circ })\]
We will apply the trigonometry identity that\[\tan ({90^ \circ } + x) = - \cot x\]
Here, \[x = {45^ \circ }\]then we will get,
\[ \Rightarrow \tan ( - {135^ \circ }) = - ( - \cot {45^ \circ })\]
\[ \Rightarrow \tan ( - {135^ \circ }) = \cot {45^ \circ }\]
We know that, \[\cot {45^ \circ } = 1\].
\[ \Rightarrow \tan ( - {135^ \circ }) = 1\]
Thus, the value of \[\tan ( - {135^ \circ }) = 1\].
Next, we will find the value of\[\cot ( - {135^ \circ })\] as below,
According to the trigonometry identity,
\[\tan ( - x) = \dfrac{1}{{\cot ( - x)}}\]
\[ \Rightarrow \cot ( - x) = \dfrac{1}{{\tan ( - x)}}\]
Let, \[x = {135^ \circ }\]
Then,
\[\cot ( - {135^ \circ }) = \dfrac{1}{{\tan ( - {{135}^ \circ })}}\]
\[ \Rightarrow \cot ( - {135^ \circ }) = \dfrac{1}{1}\]
\[ \Rightarrow \cot ( - {135^ \circ }) = 1\]
Thus, the value of \[\cot ( - {135^ \circ }) = 1\].
Hence, the value of \[\tan ( - {135^ \circ }) = 1\] and \[\cot ( - {135^ \circ }) = 1\].
Note: (1) Another method to solve,
\[\tan ( - {135^ \circ }) = \tan ({360^ \circ } - {135^ \circ }) \\
\Rightarrow \tan ( - {135^ \circ }) = \tan ({225^ \circ }) \]
Now,
\[\tan ({225^ \circ }) = \tan ({180^ \circ }) + \tan ({45^ \circ })\]
\[\Rightarrow \tan ({225^ \circ }) = \dfrac{{\tan ({{180}^ \circ }) + \tan ({{45}^ \circ })}}{{1 - \tan ({{180}^ \circ })\tan ({{45}^ \circ })}}\]
We know that \[\tan {45^ \circ } = 1\] and \[\tan {180^ \circ } = 0\], we will apply this and we will get,
\[\tan ( - {135^ \circ }) = \dfrac{{0 + 1}}{{1 + 0}}\]
\[\therefore \tan ( - {135^ \circ })= \dfrac{1}{1} = 1 \]
Thus, the value of \[\tan ( - {135^ \circ }) = 1\].
(2) Another Method: If we split 135 = 180-45, we
\[ \Rightarrow \tan ( - {135^ \circ }) = - \tan ({180^ \circ } - {45^ \circ })\]
\[\Rightarrow \tan ( - {135^ \circ }) = - \tan ({135^ \circ })\]
\[\Rightarrow \tan ( - {135^ \circ })= - \tan ({180^ \circ } - {45^ \circ })\]
As, we know that\[\tan ({180^ \circ } - x) = - \tan x\].
Here, \[x = {45^ \circ }\] and apply this, we will get,
\[\Rightarrow \tan ( - {135^ \circ }) = - ( - \tan {45^ \circ })\]
\[\Rightarrow \tan ( - {135^ \circ }) = - ( - 1)\]....................\[(\because \tan {45^ \circ } = 1)\]
\[ \therefore \tan ( - {135^ \circ })= 1\]
Thus, the value of \[\tan ( - {135^ \circ }) = 1\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

