
Find the value of $\tan \left( 65-\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\csc \left( 35-\theta \right)$ .
Answer
515.4k+ views
Hint: To find the value of the given expression, we have to convert $\tan \left( 65-\theta \right)$ into cot by using the formula $\cot \left( 90-\theta \right)=\tan \theta $ . We also have to convert $\csc \left( 35-\theta \right)$ into sec by using the formula $\csc \theta =\sec \left( 90-\theta \right)$ . Then, we have to substitute the resultant values in the given expression and simplify.
Complete step-by-step solution:
We have to find the value of $\tan \left( 65-\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\csc \left( 35-\theta \right)$ . We know that $\cot \left( 90-\theta \right)=\tan \theta $ . Therefore, we can write $\tan \left( 65-\theta \right)$ as
$\Rightarrow \tan \left( 65-\theta \right)=\cot \left( 90-\left( 65-\theta \right) \right)=\cot \left( 25+\theta \right)...\left( i \right)$
We know that $\csc \theta =\sec \left( 90-\theta \right)$ . Therefore, we can write $\csc \left( 35-\theta \right)$ as
$\Rightarrow \csc \left( 35-\theta \right)=\sec \left( 90-\left( 35-\theta \right) \right)=\sec \left( 55+\theta \right)...\left( ii \right)$
Let us substitute (i) and (ii) in the given expression.
$\begin{align}
& \Rightarrow \cot \left( 25+\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\sec \left( 55+\theta \right) \\
& =0 \\
\end{align}$
Hence, the value of $\tan \left( 65-\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\csc \left( 35-\theta \right)$ is 0.
Note: Students must be thorough with trigonometric formulas and properties. They must note that any trigonometric function with angles $\left( 180-\theta \right),\left( 180+\theta \right),\left( 360-\theta \right)\text{ and }\left( 360+\theta \right)$ will result in the same trigonometric function with angle $\theta $ provided the sign of the function varies. All the functions will be positive at angles $\left( 90-\theta \right)$ and $\left( 360+\theta \right)$ . Sine and cosec will be positive at angles $\left( 90+\theta \right)$ and $\left( 180-\theta \right)$ . At all other angles, these will be negative. Tan and cot will be positive at angles $\left( 180+\theta \right)$ and $\left( 270-\theta \right)$ . At all other angles, these will be negative. Cos and sec will be positive at $\left( 270+\theta \right)$ and $\left( 360-\theta \right)$ . At all other angles, these will be negative.
Students can also convert $\cot \left( 25+\theta \right)$ to $\tan \left( 65-\theta \right)$ and $\sec \left( 55+\theta \right)$ to $\csc \left( 35-\theta \right)$ and simplify. This method is shown below.
We know that $\tan \left( 90-\theta \right)=\cot \theta $ . Therefore, we can write $\cot \left( 25+\theta \right)$ as
$\Rightarrow \cot \left( 25+\theta \right)=\tan \left( 90-\left( 25+\theta \right) \right)=\tan \left( 65-\theta \right)...\left( a \right)$
We know that $\csc \left( 90-\theta \right)=\sec \theta $ . Therefore, we can write $\sec \left( 55+\theta \right)$ as
$\Rightarrow \sec \left( 55+\theta \right)=\csc \left( 90-\left( 55+\theta \right) \right)=\csc \left( 35-\theta \right)...\left( b \right)$
Let us substitute (a) and (b) in the given expression.
$\begin{align}
& \Rightarrow \tan \left( 65-\theta \right)-\tan \left( 65-\theta \right)-\csc \left( 35-\theta \right)+\csc \left( 35-\theta \right) \\
& =0 \\
\end{align}$
Complete step-by-step solution:
We have to find the value of $\tan \left( 65-\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\csc \left( 35-\theta \right)$ . We know that $\cot \left( 90-\theta \right)=\tan \theta $ . Therefore, we can write $\tan \left( 65-\theta \right)$ as
$\Rightarrow \tan \left( 65-\theta \right)=\cot \left( 90-\left( 65-\theta \right) \right)=\cot \left( 25+\theta \right)...\left( i \right)$
We know that $\csc \theta =\sec \left( 90-\theta \right)$ . Therefore, we can write $\csc \left( 35-\theta \right)$ as
$\Rightarrow \csc \left( 35-\theta \right)=\sec \left( 90-\left( 35-\theta \right) \right)=\sec \left( 55+\theta \right)...\left( ii \right)$
Let us substitute (i) and (ii) in the given expression.
$\begin{align}
& \Rightarrow \cot \left( 25+\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\sec \left( 55+\theta \right) \\
& =0 \\
\end{align}$
Hence, the value of $\tan \left( 65-\theta \right)-\cot \left( 25+\theta \right)-\sec \left( 55+\theta \right)+\csc \left( 35-\theta \right)$ is 0.
Note: Students must be thorough with trigonometric formulas and properties. They must note that any trigonometric function with angles $\left( 180-\theta \right),\left( 180+\theta \right),\left( 360-\theta \right)\text{ and }\left( 360+\theta \right)$ will result in the same trigonometric function with angle $\theta $ provided the sign of the function varies. All the functions will be positive at angles $\left( 90-\theta \right)$ and $\left( 360+\theta \right)$ . Sine and cosec will be positive at angles $\left( 90+\theta \right)$ and $\left( 180-\theta \right)$ . At all other angles, these will be negative. Tan and cot will be positive at angles $\left( 180+\theta \right)$ and $\left( 270-\theta \right)$ . At all other angles, these will be negative. Cos and sec will be positive at $\left( 270+\theta \right)$ and $\left( 360-\theta \right)$ . At all other angles, these will be negative.
Students can also convert $\cot \left( 25+\theta \right)$ to $\tan \left( 65-\theta \right)$ and $\sec \left( 55+\theta \right)$ to $\csc \left( 35-\theta \right)$ and simplify. This method is shown below.
We know that $\tan \left( 90-\theta \right)=\cot \theta $ . Therefore, we can write $\cot \left( 25+\theta \right)$ as
$\Rightarrow \cot \left( 25+\theta \right)=\tan \left( 90-\left( 25+\theta \right) \right)=\tan \left( 65-\theta \right)...\left( a \right)$
We know that $\csc \left( 90-\theta \right)=\sec \theta $ . Therefore, we can write $\sec \left( 55+\theta \right)$ as
$\Rightarrow \sec \left( 55+\theta \right)=\csc \left( 90-\left( 55+\theta \right) \right)=\csc \left( 35-\theta \right)...\left( b \right)$
Let us substitute (a) and (b) in the given expression.
$\begin{align}
& \Rightarrow \tan \left( 65-\theta \right)-\tan \left( 65-\theta \right)-\csc \left( 35-\theta \right)+\csc \left( 35-\theta \right) \\
& =0 \\
\end{align}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

