
Find the value of $\tan \left( {{{15}^ \circ }} \right)$ using half angle formula.
Answer
543.6k+ views
Hint:The given problem can be solved by using the half angle formula of tangent. Use of the half angle formula helps us to convert $\tan \left( {2\theta } \right)$ to an expression consisting of $\tan \left( \theta \right)$ .
Half angle formula for tangent is: \[\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}}\] . This formula can be used to find a quadratic equation in $\tan \left( {{{15}^ \circ }} \right)$ as we know the value of $\tan \left( {{{30}^ \circ }} \right)$ .
Complete step by step solution:
The given problem requires us to find the value of $\tan \left( {{{15}^ \circ }} \right)$ using half angle formula. The half angle formula for tangent is: \[\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}}\] .
So, considering $x = {15^ \circ }$, we get to a quadratic equation in $\tan \left( {{{15}^ \circ }} \right)$ using the formula.
So, \[\tan \left( {2 \times {{15}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\] .
\[ = \tan \left( {{{30}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\]
Now, we know that the value of $\tan \left( {{{30}^ \circ }} \right)$ is $\dfrac{1}{{\sqrt 3 }}$ .
So, we get the equation as:
\[ = \dfrac{1}{{\sqrt 3 }} = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\]
Cross multiplying the fractions and simplifying the calculations, we get,
\[ = 1 - {\tan ^2}\left( {{{15}^ \circ }} \right) = 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right)\]
Rearranging the equation into standard form of quadratic equation $a{x^2} + bx + c = 0$, we get,
\[ = {\tan ^2}\left( {{{15}^ \circ }} \right) + 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right) - 1 = 0\]
Now, the above quadratic equation can be solved by various methods such as: Completing the square method, Splitting the middle term method, factorisation method and using the quadratic formula.
We would use a quadratic formula to solve the above equation as this method involves minimal calculations. So, Let $\tan \left( {{{15}^ \circ }} \right) = y$. Then, the equation becomes \[{y^2} + 2\sqrt 3 y - 1 = 0\] .
Comparing the equation \[{y^2} + 2\sqrt 3 y - 1 = 0\] with the standard form of quadratic equation, $a{x^2} + bx + c = 0$, we get, $a = 1$, $b = 2\sqrt 3 $ and $c = - 1$ .
So, Using quadratic formula,
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Putting the values,
$ = \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$ = \dfrac{{ - 2\sqrt 3 \pm \sqrt {12 + 4} }}{2}$
Simplifying further,
$ = \dfrac{{ - 2\sqrt 3 \pm 4}}{2}$
$ = \left( { - \sqrt 3 \pm 2} \right)$
So, either $y = \left( { - \sqrt 3 + 2} \right)$ or $y = \left( { - \sqrt 3 - 2} \right)$ .
Substituting back $\tan \left( {{{15}^ \circ }} \right) = y$, we get,
either $\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right)$ or $\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 - 2} \right)$ .
Since, the angle is acute. Hence, it would lie in the first quadrant. So, $\tan \left( {{{15}^ \circ }} \right)$ must be positive.
Hence, the value of$\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right)$ .
Note: The above question can also be solved by using compound angle formulae instead of half angle formulae such as $\tan (A + B) = \left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$ . This method can also be used to get to the correct answer of the given problem.
Half angle formula for tangent is: \[\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}}\] . This formula can be used to find a quadratic equation in $\tan \left( {{{15}^ \circ }} \right)$ as we know the value of $\tan \left( {{{30}^ \circ }} \right)$ .
Complete step by step solution:
The given problem requires us to find the value of $\tan \left( {{{15}^ \circ }} \right)$ using half angle formula. The half angle formula for tangent is: \[\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}}\] .
So, considering $x = {15^ \circ }$, we get to a quadratic equation in $\tan \left( {{{15}^ \circ }} \right)$ using the formula.
So, \[\tan \left( {2 \times {{15}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\] .
\[ = \tan \left( {{{30}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\]
Now, we know that the value of $\tan \left( {{{30}^ \circ }} \right)$ is $\dfrac{1}{{\sqrt 3 }}$ .
So, we get the equation as:
\[ = \dfrac{1}{{\sqrt 3 }} = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\]
Cross multiplying the fractions and simplifying the calculations, we get,
\[ = 1 - {\tan ^2}\left( {{{15}^ \circ }} \right) = 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right)\]
Rearranging the equation into standard form of quadratic equation $a{x^2} + bx + c = 0$, we get,
\[ = {\tan ^2}\left( {{{15}^ \circ }} \right) + 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right) - 1 = 0\]
Now, the above quadratic equation can be solved by various methods such as: Completing the square method, Splitting the middle term method, factorisation method and using the quadratic formula.
We would use a quadratic formula to solve the above equation as this method involves minimal calculations. So, Let $\tan \left( {{{15}^ \circ }} \right) = y$. Then, the equation becomes \[{y^2} + 2\sqrt 3 y - 1 = 0\] .
Comparing the equation \[{y^2} + 2\sqrt 3 y - 1 = 0\] with the standard form of quadratic equation, $a{x^2} + bx + c = 0$, we get, $a = 1$, $b = 2\sqrt 3 $ and $c = - 1$ .
So, Using quadratic formula,
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Putting the values,
$ = \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$ = \dfrac{{ - 2\sqrt 3 \pm \sqrt {12 + 4} }}{2}$
Simplifying further,
$ = \dfrac{{ - 2\sqrt 3 \pm 4}}{2}$
$ = \left( { - \sqrt 3 \pm 2} \right)$
So, either $y = \left( { - \sqrt 3 + 2} \right)$ or $y = \left( { - \sqrt 3 - 2} \right)$ .
Substituting back $\tan \left( {{{15}^ \circ }} \right) = y$, we get,
either $\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right)$ or $\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 - 2} \right)$ .
Since, the angle is acute. Hence, it would lie in the first quadrant. So, $\tan \left( {{{15}^ \circ }} \right)$ must be positive.
Hence, the value of$\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right)$ .
Note: The above question can also be solved by using compound angle formulae instead of half angle formulae such as $\tan (A + B) = \left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$ . This method can also be used to get to the correct answer of the given problem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

