
Find the value of $\tan \left( {{{15}^ \circ }} \right)$ using half angle formula.
Answer
559.2k+ views
Hint:The given problem can be solved by using the half angle formula of tangent. Use of the half angle formula helps us to convert $\tan \left( {2\theta } \right)$ to an expression consisting of $\tan \left( \theta \right)$ .
Half angle formula for tangent is: \[\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}}\] . This formula can be used to find a quadratic equation in $\tan \left( {{{15}^ \circ }} \right)$ as we know the value of $\tan \left( {{{30}^ \circ }} \right)$ .
Complete step by step solution:
The given problem requires us to find the value of $\tan \left( {{{15}^ \circ }} \right)$ using half angle formula. The half angle formula for tangent is: \[\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}}\] .
So, considering $x = {15^ \circ }$, we get to a quadratic equation in $\tan \left( {{{15}^ \circ }} \right)$ using the formula.
So, \[\tan \left( {2 \times {{15}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\] .
\[ = \tan \left( {{{30}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\]
Now, we know that the value of $\tan \left( {{{30}^ \circ }} \right)$ is $\dfrac{1}{{\sqrt 3 }}$ .
So, we get the equation as:
\[ = \dfrac{1}{{\sqrt 3 }} = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\]
Cross multiplying the fractions and simplifying the calculations, we get,
\[ = 1 - {\tan ^2}\left( {{{15}^ \circ }} \right) = 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right)\]
Rearranging the equation into standard form of quadratic equation $a{x^2} + bx + c = 0$, we get,
\[ = {\tan ^2}\left( {{{15}^ \circ }} \right) + 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right) - 1 = 0\]
Now, the above quadratic equation can be solved by various methods such as: Completing the square method, Splitting the middle term method, factorisation method and using the quadratic formula.
We would use a quadratic formula to solve the above equation as this method involves minimal calculations. So, Let $\tan \left( {{{15}^ \circ }} \right) = y$. Then, the equation becomes \[{y^2} + 2\sqrt 3 y - 1 = 0\] .
Comparing the equation \[{y^2} + 2\sqrt 3 y - 1 = 0\] with the standard form of quadratic equation, $a{x^2} + bx + c = 0$, we get, $a = 1$, $b = 2\sqrt 3 $ and $c = - 1$ .
So, Using quadratic formula,
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Putting the values,
$ = \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$ = \dfrac{{ - 2\sqrt 3 \pm \sqrt {12 + 4} }}{2}$
Simplifying further,
$ = \dfrac{{ - 2\sqrt 3 \pm 4}}{2}$
$ = \left( { - \sqrt 3 \pm 2} \right)$
So, either $y = \left( { - \sqrt 3 + 2} \right)$ or $y = \left( { - \sqrt 3 - 2} \right)$ .
Substituting back $\tan \left( {{{15}^ \circ }} \right) = y$, we get,
either $\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right)$ or $\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 - 2} \right)$ .
Since, the angle is acute. Hence, it would lie in the first quadrant. So, $\tan \left( {{{15}^ \circ }} \right)$ must be positive.
Hence, the value of$\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right)$ .
Note: The above question can also be solved by using compound angle formulae instead of half angle formulae such as $\tan (A + B) = \left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$ . This method can also be used to get to the correct answer of the given problem.
Half angle formula for tangent is: \[\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}}\] . This formula can be used to find a quadratic equation in $\tan \left( {{{15}^ \circ }} \right)$ as we know the value of $\tan \left( {{{30}^ \circ }} \right)$ .
Complete step by step solution:
The given problem requires us to find the value of $\tan \left( {{{15}^ \circ }} \right)$ using half angle formula. The half angle formula for tangent is: \[\tan \left( {2x} \right) = \dfrac{{2\tan \left( x \right)}}{{1 - {{\tan }^2}\left( x \right)}}\] .
So, considering $x = {15^ \circ }$, we get to a quadratic equation in $\tan \left( {{{15}^ \circ }} \right)$ using the formula.
So, \[\tan \left( {2 \times {{15}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\] .
\[ = \tan \left( {{{30}^ \circ }} \right) = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\]
Now, we know that the value of $\tan \left( {{{30}^ \circ }} \right)$ is $\dfrac{1}{{\sqrt 3 }}$ .
So, we get the equation as:
\[ = \dfrac{1}{{\sqrt 3 }} = \dfrac{{2\tan \left( {{{15}^ \circ }} \right)}}{{1 - {{\tan }^2}\left( {{{15}^ \circ }} \right)}}\]
Cross multiplying the fractions and simplifying the calculations, we get,
\[ = 1 - {\tan ^2}\left( {{{15}^ \circ }} \right) = 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right)\]
Rearranging the equation into standard form of quadratic equation $a{x^2} + bx + c = 0$, we get,
\[ = {\tan ^2}\left( {{{15}^ \circ }} \right) + 2\sqrt 3 \tan \left( {{{15}^ \circ }} \right) - 1 = 0\]
Now, the above quadratic equation can be solved by various methods such as: Completing the square method, Splitting the middle term method, factorisation method and using the quadratic formula.
We would use a quadratic formula to solve the above equation as this method involves minimal calculations. So, Let $\tan \left( {{{15}^ \circ }} \right) = y$. Then, the equation becomes \[{y^2} + 2\sqrt 3 y - 1 = 0\] .
Comparing the equation \[{y^2} + 2\sqrt 3 y - 1 = 0\] with the standard form of quadratic equation, $a{x^2} + bx + c = 0$, we get, $a = 1$, $b = 2\sqrt 3 $ and $c = - 1$ .
So, Using quadratic formula,
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Putting the values,
$ = \dfrac{{ - 2\sqrt 3 \pm \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{{2\left( 1 \right)}}$
$ = \dfrac{{ - 2\sqrt 3 \pm \sqrt {12 + 4} }}{2}$
Simplifying further,
$ = \dfrac{{ - 2\sqrt 3 \pm 4}}{2}$
$ = \left( { - \sqrt 3 \pm 2} \right)$
So, either $y = \left( { - \sqrt 3 + 2} \right)$ or $y = \left( { - \sqrt 3 - 2} \right)$ .
Substituting back $\tan \left( {{{15}^ \circ }} \right) = y$, we get,
either $\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right)$ or $\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 - 2} \right)$ .
Since, the angle is acute. Hence, it would lie in the first quadrant. So, $\tan \left( {{{15}^ \circ }} \right)$ must be positive.
Hence, the value of$\tan \left( {{{15}^ \circ }} \right) = \left( { - \sqrt 3 + 2} \right)$ .
Note: The above question can also be solved by using compound angle formulae instead of half angle formulae such as $\tan (A + B) = \left( {\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}} \right)$ . This method can also be used to get to the correct answer of the given problem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

