
Find the value of \[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]
Answer
594.9k+ views
Hint: In this question, first identify the pair of complementary angles. Now use the formulas\[\tan \theta =\cot \left( 90-\theta \right)\] and \[\cot \theta =\tan \left( 90-\theta \right)\] and convert the trigonometric ratios. Now, use \[\tan \theta =\dfrac{1}{\cot \theta }\] and cancel the like terms and use \[\tan \dfrac{\pi }{4}=1\] to get the desired result.
Complete step-by-step answer:
In this question, we have to find the value of \[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]. Before proceeding with this question, let us first understand what complementary angles are. Complementary angles are angles whose sum is equal to \[\dfrac{\pi }{2}\]. If we have, \[\angle A+\angle B=\dfrac{\pi }{2}\], then \[\angle A\] and \[\angle B\] are complementary angles of each other.
Similarly, \[\theta \] and \[\left( \dfrac{\pi }{2}-\theta \right)\] are complementary to each other because \[\theta +\dfrac{\pi }{2}-\theta =\dfrac{\pi }{2}\].
So, in trigonometry, we have multiple formulas related to complementary angles and that are the following:
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta ;\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cot \left( \dfrac{\pi }{2}-\theta \right)=\tan \theta ;\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta \\
& \operatorname{cosec}\left( \dfrac{\pi }{2}-\theta \right)=\sec \theta ;\sec \left( \dfrac{\pi }{2}-\theta \right)=\operatorname{cosec}\theta \\
\end{align}\]
Let us now consider the expression given in the question,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}....\left( i \right)\]
In the above expression, we can see that,
\[\dfrac{\pi }{20}+\dfrac{9\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are complementary. By using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{\pi }{20} \right)=\cot \dfrac{9\pi }{20}\]
Similarly, we can see that,
\[\dfrac{3\pi }{20}+\dfrac{7\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are also complementary. So, by again using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{3\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{3\pi }{20} \right)=\cot \dfrac{7\pi }{20}\]
By substituting the value of \[\tan \dfrac{\pi }{20}\] and \[\tan \dfrac{3\pi }{20}\] in the expression (i), we get,
\[E=\cot \dfrac{9\pi }{20}.\cot \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
We know that \[\cot \theta =\dfrac{1}{\tan \theta }\]. So, by using this in the above expression, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
Now, we know that \[\tan \dfrac{5\pi }{20}=\tan \dfrac{\pi }{4}\]. So, by using this and rearranging the terms, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\tan \dfrac{9\pi }{20}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{\pi }{4}\]
Now, by canceling the like terms, we get,
\[E=\tan \dfrac{\pi }{4}\]
\[E=\tan \left( \dfrac{\pi }{4}.\dfrac{{{180}^{o}}}{\pi } \right)=\tan {{45}^{o}}\]
From the above table, we can see that \[\tan {{45}^{o}}=1\]. So, we get,
E = 1
So, we get the value of
\[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}=1\]
Note: In these types of questions, it is very important to identify the pair of complementary angles. This question can also be solved in the following way.
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]
We know that \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\] using this, we get,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{2}-\dfrac{7\pi }{20} \right)\cot \left( \dfrac{\pi }{2}-\dfrac{9\pi }{20} \right)\]
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{20} \right)\cot \left( \dfrac{\pi }{20} \right)\]
We know that \[\tan \theta =\dfrac{1}{\cot \theta }\] and \[\tan \dfrac{\pi }{4}=1\]. Using these, we get,
\[E=\dfrac{1}{\cot \dfrac{\pi }{20}}.\cot \dfrac{\pi }{20}.\dfrac{1}{\cot \dfrac{3\pi }{20}}.\cot \dfrac{3\pi }{20}.\tan \dfrac{\pi }{4}\]
\[E=1\]
Complete step-by-step answer:
In this question, we have to find the value of \[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]. Before proceeding with this question, let us first understand what complementary angles are. Complementary angles are angles whose sum is equal to \[\dfrac{\pi }{2}\]. If we have, \[\angle A+\angle B=\dfrac{\pi }{2}\], then \[\angle A\] and \[\angle B\] are complementary angles of each other.
Similarly, \[\theta \] and \[\left( \dfrac{\pi }{2}-\theta \right)\] are complementary to each other because \[\theta +\dfrac{\pi }{2}-\theta =\dfrac{\pi }{2}\].
So, in trigonometry, we have multiple formulas related to complementary angles and that are the following:
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta ;\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cot \left( \dfrac{\pi }{2}-\theta \right)=\tan \theta ;\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta \\
& \operatorname{cosec}\left( \dfrac{\pi }{2}-\theta \right)=\sec \theta ;\sec \left( \dfrac{\pi }{2}-\theta \right)=\operatorname{cosec}\theta \\
\end{align}\]
Let us now consider the expression given in the question,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}....\left( i \right)\]
In the above expression, we can see that,
\[\dfrac{\pi }{20}+\dfrac{9\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are complementary. By using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{\pi }{20} \right)=\cot \dfrac{9\pi }{20}\]
Similarly, we can see that,
\[\dfrac{3\pi }{20}+\dfrac{7\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are also complementary. So, by again using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{3\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{3\pi }{20} \right)=\cot \dfrac{7\pi }{20}\]
By substituting the value of \[\tan \dfrac{\pi }{20}\] and \[\tan \dfrac{3\pi }{20}\] in the expression (i), we get,
\[E=\cot \dfrac{9\pi }{20}.\cot \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
We know that \[\cot \theta =\dfrac{1}{\tan \theta }\]. So, by using this in the above expression, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
Now, we know that \[\tan \dfrac{5\pi }{20}=\tan \dfrac{\pi }{4}\]. So, by using this and rearranging the terms, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\tan \dfrac{9\pi }{20}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{\pi }{4}\]
Now, by canceling the like terms, we get,
\[E=\tan \dfrac{\pi }{4}\]
\[E=\tan \left( \dfrac{\pi }{4}.\dfrac{{{180}^{o}}}{\pi } \right)=\tan {{45}^{o}}\]
| \[\sin \theta \] | \[\cos \theta \] | \[\tan \theta \] | \[\operatorname{cosec}\theta \] | \[\sec \theta \] | \[\cot \theta \] | |
| 0 | 0 | 1 | 0 | - | 1 | - |
| \[\dfrac{\pi }{6}\] | \[\dfrac{1}{2}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{3}}\] | 2 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{3}\] |
| \[\dfrac{\pi }{4}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{\sqrt{2}}\] | 1 | \[\sqrt{2}\] | \[\sqrt{2}\] | 1 |
| \[\dfrac{\pi }{3}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt{3}\] | \[\dfrac{2}{\sqrt{3}}\] | 2 | \[\dfrac{1}{\sqrt{3}}\] |
| \[\dfrac{\pi }{2}\] | 1 | 0 | - | 1 | - | 0 |
From the above table, we can see that \[\tan {{45}^{o}}=1\]. So, we get,
E = 1
So, we get the value of
\[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}=1\]
Note: In these types of questions, it is very important to identify the pair of complementary angles. This question can also be solved in the following way.
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]
We know that \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\] using this, we get,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{2}-\dfrac{7\pi }{20} \right)\cot \left( \dfrac{\pi }{2}-\dfrac{9\pi }{20} \right)\]
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{20} \right)\cot \left( \dfrac{\pi }{20} \right)\]
We know that \[\tan \theta =\dfrac{1}{\cot \theta }\] and \[\tan \dfrac{\pi }{4}=1\]. Using these, we get,
\[E=\dfrac{1}{\cot \dfrac{\pi }{20}}.\cot \dfrac{\pi }{20}.\dfrac{1}{\cot \dfrac{3\pi }{20}}.\cot \dfrac{3\pi }{20}.\tan \dfrac{\pi }{4}\]
\[E=1\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

