
Find the value of \[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]
Answer
609.3k+ views
Hint: In this question, first identify the pair of complementary angles. Now use the formulas\[\tan \theta =\cot \left( 90-\theta \right)\] and \[\cot \theta =\tan \left( 90-\theta \right)\] and convert the trigonometric ratios. Now, use \[\tan \theta =\dfrac{1}{\cot \theta }\] and cancel the like terms and use \[\tan \dfrac{\pi }{4}=1\] to get the desired result.
Complete step-by-step answer:
In this question, we have to find the value of \[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]. Before proceeding with this question, let us first understand what complementary angles are. Complementary angles are angles whose sum is equal to \[\dfrac{\pi }{2}\]. If we have, \[\angle A+\angle B=\dfrac{\pi }{2}\], then \[\angle A\] and \[\angle B\] are complementary angles of each other.
Similarly, \[\theta \] and \[\left( \dfrac{\pi }{2}-\theta \right)\] are complementary to each other because \[\theta +\dfrac{\pi }{2}-\theta =\dfrac{\pi }{2}\].
So, in trigonometry, we have multiple formulas related to complementary angles and that are the following:
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta ;\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cot \left( \dfrac{\pi }{2}-\theta \right)=\tan \theta ;\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta \\
& \operatorname{cosec}\left( \dfrac{\pi }{2}-\theta \right)=\sec \theta ;\sec \left( \dfrac{\pi }{2}-\theta \right)=\operatorname{cosec}\theta \\
\end{align}\]
Let us now consider the expression given in the question,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}....\left( i \right)\]
In the above expression, we can see that,
\[\dfrac{\pi }{20}+\dfrac{9\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are complementary. By using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{\pi }{20} \right)=\cot \dfrac{9\pi }{20}\]
Similarly, we can see that,
\[\dfrac{3\pi }{20}+\dfrac{7\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are also complementary. So, by again using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{3\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{3\pi }{20} \right)=\cot \dfrac{7\pi }{20}\]
By substituting the value of \[\tan \dfrac{\pi }{20}\] and \[\tan \dfrac{3\pi }{20}\] in the expression (i), we get,
\[E=\cot \dfrac{9\pi }{20}.\cot \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
We know that \[\cot \theta =\dfrac{1}{\tan \theta }\]. So, by using this in the above expression, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
Now, we know that \[\tan \dfrac{5\pi }{20}=\tan \dfrac{\pi }{4}\]. So, by using this and rearranging the terms, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\tan \dfrac{9\pi }{20}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{\pi }{4}\]
Now, by canceling the like terms, we get,
\[E=\tan \dfrac{\pi }{4}\]
\[E=\tan \left( \dfrac{\pi }{4}.\dfrac{{{180}^{o}}}{\pi } \right)=\tan {{45}^{o}}\]
From the above table, we can see that \[\tan {{45}^{o}}=1\]. So, we get,
E = 1
So, we get the value of
\[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}=1\]
Note: In these types of questions, it is very important to identify the pair of complementary angles. This question can also be solved in the following way.
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]
We know that \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\] using this, we get,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{2}-\dfrac{7\pi }{20} \right)\cot \left( \dfrac{\pi }{2}-\dfrac{9\pi }{20} \right)\]
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{20} \right)\cot \left( \dfrac{\pi }{20} \right)\]
We know that \[\tan \theta =\dfrac{1}{\cot \theta }\] and \[\tan \dfrac{\pi }{4}=1\]. Using these, we get,
\[E=\dfrac{1}{\cot \dfrac{\pi }{20}}.\cot \dfrac{\pi }{20}.\dfrac{1}{\cot \dfrac{3\pi }{20}}.\cot \dfrac{3\pi }{20}.\tan \dfrac{\pi }{4}\]
\[E=1\]
Complete step-by-step answer:
In this question, we have to find the value of \[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]. Before proceeding with this question, let us first understand what complementary angles are. Complementary angles are angles whose sum is equal to \[\dfrac{\pi }{2}\]. If we have, \[\angle A+\angle B=\dfrac{\pi }{2}\], then \[\angle A\] and \[\angle B\] are complementary angles of each other.
Similarly, \[\theta \] and \[\left( \dfrac{\pi }{2}-\theta \right)\] are complementary to each other because \[\theta +\dfrac{\pi }{2}-\theta =\dfrac{\pi }{2}\].
So, in trigonometry, we have multiple formulas related to complementary angles and that are the following:
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta ;\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cot \left( \dfrac{\pi }{2}-\theta \right)=\tan \theta ;\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta \\
& \operatorname{cosec}\left( \dfrac{\pi }{2}-\theta \right)=\sec \theta ;\sec \left( \dfrac{\pi }{2}-\theta \right)=\operatorname{cosec}\theta \\
\end{align}\]
Let us now consider the expression given in the question,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}....\left( i \right)\]
In the above expression, we can see that,
\[\dfrac{\pi }{20}+\dfrac{9\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are complementary. By using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{\pi }{20} \right)=\cot \dfrac{9\pi }{20}\]
Similarly, we can see that,
\[\dfrac{3\pi }{20}+\dfrac{7\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are also complementary. So, by again using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{3\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{3\pi }{20} \right)=\cot \dfrac{7\pi }{20}\]
By substituting the value of \[\tan \dfrac{\pi }{20}\] and \[\tan \dfrac{3\pi }{20}\] in the expression (i), we get,
\[E=\cot \dfrac{9\pi }{20}.\cot \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
We know that \[\cot \theta =\dfrac{1}{\tan \theta }\]. So, by using this in the above expression, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
Now, we know that \[\tan \dfrac{5\pi }{20}=\tan \dfrac{\pi }{4}\]. So, by using this and rearranging the terms, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\tan \dfrac{9\pi }{20}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{\pi }{4}\]
Now, by canceling the like terms, we get,
\[E=\tan \dfrac{\pi }{4}\]
\[E=\tan \left( \dfrac{\pi }{4}.\dfrac{{{180}^{o}}}{\pi } \right)=\tan {{45}^{o}}\]
| \[\sin \theta \] | \[\cos \theta \] | \[\tan \theta \] | \[\operatorname{cosec}\theta \] | \[\sec \theta \] | \[\cot \theta \] | |
| 0 | 0 | 1 | 0 | - | 1 | - |
| \[\dfrac{\pi }{6}\] | \[\dfrac{1}{2}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{3}}\] | 2 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{3}\] |
| \[\dfrac{\pi }{4}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{\sqrt{2}}\] | 1 | \[\sqrt{2}\] | \[\sqrt{2}\] | 1 |
| \[\dfrac{\pi }{3}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt{3}\] | \[\dfrac{2}{\sqrt{3}}\] | 2 | \[\dfrac{1}{\sqrt{3}}\] |
| \[\dfrac{\pi }{2}\] | 1 | 0 | - | 1 | - | 0 |
From the above table, we can see that \[\tan {{45}^{o}}=1\]. So, we get,
E = 1
So, we get the value of
\[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}=1\]
Note: In these types of questions, it is very important to identify the pair of complementary angles. This question can also be solved in the following way.
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]
We know that \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\] using this, we get,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{2}-\dfrac{7\pi }{20} \right)\cot \left( \dfrac{\pi }{2}-\dfrac{9\pi }{20} \right)\]
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{20} \right)\cot \left( \dfrac{\pi }{20} \right)\]
We know that \[\tan \theta =\dfrac{1}{\cot \theta }\] and \[\tan \dfrac{\pi }{4}=1\]. Using these, we get,
\[E=\dfrac{1}{\cot \dfrac{\pi }{20}}.\cot \dfrac{\pi }{20}.\dfrac{1}{\cot \dfrac{3\pi }{20}}.\cot \dfrac{3\pi }{20}.\tan \dfrac{\pi }{4}\]
\[E=1\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which Country is Called "The Land of Festivals"?

What is Contraception List its four different methods class 10 biology CBSE

