
Find the value of \[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]
Answer
513.3k+ views
Hint: In this question, first identify the pair of complementary angles. Now use the formulas\[\tan \theta =\cot \left( 90-\theta \right)\] and \[\cot \theta =\tan \left( 90-\theta \right)\] and convert the trigonometric ratios. Now, use \[\tan \theta =\dfrac{1}{\cot \theta }\] and cancel the like terms and use \[\tan \dfrac{\pi }{4}=1\] to get the desired result.
Complete step-by-step answer:
In this question, we have to find the value of \[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]. Before proceeding with this question, let us first understand what complementary angles are. Complementary angles are angles whose sum is equal to \[\dfrac{\pi }{2}\]. If we have, \[\angle A+\angle B=\dfrac{\pi }{2}\], then \[\angle A\] and \[\angle B\] are complementary angles of each other.
Similarly, \[\theta \] and \[\left( \dfrac{\pi }{2}-\theta \right)\] are complementary to each other because \[\theta +\dfrac{\pi }{2}-\theta =\dfrac{\pi }{2}\].
So, in trigonometry, we have multiple formulas related to complementary angles and that are the following:
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta ;\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cot \left( \dfrac{\pi }{2}-\theta \right)=\tan \theta ;\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta \\
& \operatorname{cosec}\left( \dfrac{\pi }{2}-\theta \right)=\sec \theta ;\sec \left( \dfrac{\pi }{2}-\theta \right)=\operatorname{cosec}\theta \\
\end{align}\]
Let us now consider the expression given in the question,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}....\left( i \right)\]
In the above expression, we can see that,
\[\dfrac{\pi }{20}+\dfrac{9\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are complementary. By using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{\pi }{20} \right)=\cot \dfrac{9\pi }{20}\]
Similarly, we can see that,
\[\dfrac{3\pi }{20}+\dfrac{7\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are also complementary. So, by again using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{3\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{3\pi }{20} \right)=\cot \dfrac{7\pi }{20}\]
By substituting the value of \[\tan \dfrac{\pi }{20}\] and \[\tan \dfrac{3\pi }{20}\] in the expression (i), we get,
\[E=\cot \dfrac{9\pi }{20}.\cot \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
We know that \[\cot \theta =\dfrac{1}{\tan \theta }\]. So, by using this in the above expression, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
Now, we know that \[\tan \dfrac{5\pi }{20}=\tan \dfrac{\pi }{4}\]. So, by using this and rearranging the terms, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\tan \dfrac{9\pi }{20}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{\pi }{4}\]
Now, by canceling the like terms, we get,
\[E=\tan \dfrac{\pi }{4}\]
\[E=\tan \left( \dfrac{\pi }{4}.\dfrac{{{180}^{o}}}{\pi } \right)=\tan {{45}^{o}}\]
From the above table, we can see that \[\tan {{45}^{o}}=1\]. So, we get,
E = 1
So, we get the value of
\[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}=1\]
Note: In these types of questions, it is very important to identify the pair of complementary angles. This question can also be solved in the following way.
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]
We know that \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\] using this, we get,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{2}-\dfrac{7\pi }{20} \right)\cot \left( \dfrac{\pi }{2}-\dfrac{9\pi }{20} \right)\]
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{20} \right)\cot \left( \dfrac{\pi }{20} \right)\]
We know that \[\tan \theta =\dfrac{1}{\cot \theta }\] and \[\tan \dfrac{\pi }{4}=1\]. Using these, we get,
\[E=\dfrac{1}{\cot \dfrac{\pi }{20}}.\cot \dfrac{\pi }{20}.\dfrac{1}{\cot \dfrac{3\pi }{20}}.\cot \dfrac{3\pi }{20}.\tan \dfrac{\pi }{4}\]
\[E=1\]
Complete step-by-step answer:
In this question, we have to find the value of \[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]. Before proceeding with this question, let us first understand what complementary angles are. Complementary angles are angles whose sum is equal to \[\dfrac{\pi }{2}\]. If we have, \[\angle A+\angle B=\dfrac{\pi }{2}\], then \[\angle A\] and \[\angle B\] are complementary angles of each other.
Similarly, \[\theta \] and \[\left( \dfrac{\pi }{2}-\theta \right)\] are complementary to each other because \[\theta +\dfrac{\pi }{2}-\theta =\dfrac{\pi }{2}\].
So, in trigonometry, we have multiple formulas related to complementary angles and that are the following:
\[\begin{align}
& \sin \left( \dfrac{\pi }{2}-\theta \right)=\cos \theta ;\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta \\
& \cot \left( \dfrac{\pi }{2}-\theta \right)=\tan \theta ;\tan \left( \dfrac{\pi }{2}-\theta \right)=\cot \theta \\
& \operatorname{cosec}\left( \dfrac{\pi }{2}-\theta \right)=\sec \theta ;\sec \left( \dfrac{\pi }{2}-\theta \right)=\operatorname{cosec}\theta \\
\end{align}\]
Let us now consider the expression given in the question,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}....\left( i \right)\]
In the above expression, we can see that,
\[\dfrac{\pi }{20}+\dfrac{9\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are complementary. By using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{\pi }{20} \right)=\cot \dfrac{9\pi }{20}\]
Similarly, we can see that,
\[\dfrac{3\pi }{20}+\dfrac{7\pi }{20}=\dfrac{10\pi }{20}=\dfrac{\pi }{2}\]
So, these angles are also complementary. So, by again using \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\], we get,
\[\tan \dfrac{3\pi }{20}=\cot \left( \dfrac{\pi }{2}-\dfrac{3\pi }{20} \right)=\cot \dfrac{7\pi }{20}\]
By substituting the value of \[\tan \dfrac{\pi }{20}\] and \[\tan \dfrac{3\pi }{20}\] in the expression (i), we get,
\[E=\cot \dfrac{9\pi }{20}.\cot \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
We know that \[\cot \theta =\dfrac{1}{\tan \theta }\]. So, by using this in the above expression, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{5\pi }{20}.\tan \dfrac{7\pi }{20}.\tan \dfrac{9\pi }{20}\]
Now, we know that \[\tan \dfrac{5\pi }{20}=\tan \dfrac{\pi }{4}\]. So, by using this and rearranging the terms, we get,
\[E=\dfrac{1}{\tan \dfrac{9\pi }{20}}.\tan \dfrac{9\pi }{20}.\dfrac{1}{\tan \dfrac{7\pi }{20}}.\tan \dfrac{7\pi }{20}.\tan \dfrac{5\pi }{20}.\tan \dfrac{\pi }{4}\]
Now, by canceling the like terms, we get,
\[E=\tan \dfrac{\pi }{4}\]
\[E=\tan \left( \dfrac{\pi }{4}.\dfrac{{{180}^{o}}}{\pi } \right)=\tan {{45}^{o}}\]
\[\sin \theta \] | \[\cos \theta \] | \[\tan \theta \] | \[\operatorname{cosec}\theta \] | \[\sec \theta \] | \[\cot \theta \] | |
0 | 0 | 1 | 0 | - | 1 | - |
\[\dfrac{\pi }{6}\] | \[\dfrac{1}{2}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{3}}\] | 2 | \[\dfrac{2}{\sqrt{3}}\] | \[\sqrt{3}\] |
\[\dfrac{\pi }{4}\] | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{\sqrt{2}}\] | 1 | \[\sqrt{2}\] | \[\sqrt{2}\] | 1 |
\[\dfrac{\pi }{3}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt{3}\] | \[\dfrac{2}{\sqrt{3}}\] | 2 | \[\dfrac{1}{\sqrt{3}}\] |
\[\dfrac{\pi }{2}\] | 1 | 0 | - | 1 | - | 0 |
From the above table, we can see that \[\tan {{45}^{o}}=1\]. So, we get,
E = 1
So, we get the value of
\[\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}=1\]
Note: In these types of questions, it is very important to identify the pair of complementary angles. This question can also be solved in the following way.
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{5\pi }{20}\tan \dfrac{7\pi }{20}\tan \dfrac{9\pi }{20}\]
We know that \[\tan \theta =\cot \left( \dfrac{\pi }{2}-\theta \right)\] using this, we get,
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{2}-\dfrac{7\pi }{20} \right)\cot \left( \dfrac{\pi }{2}-\dfrac{9\pi }{20} \right)\]
\[E=\tan \dfrac{\pi }{20}\tan \dfrac{3\pi }{20}\tan \dfrac{\pi }{4}\cot \left( \dfrac{\pi }{20} \right)\cot \left( \dfrac{\pi }{20} \right)\]
We know that \[\tan \theta =\dfrac{1}{\cot \theta }\] and \[\tan \dfrac{\pi }{4}=1\]. Using these, we get,
\[E=\dfrac{1}{\cot \dfrac{\pi }{20}}.\cot \dfrac{\pi }{20}.\dfrac{1}{\cot \dfrac{3\pi }{20}}.\cot \dfrac{3\pi }{20}.\tan \dfrac{\pi }{4}\]
\[E=1\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Difference between mass and weight class 10 physics CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Who gives recognition to political parties as National class 10 social science CBSE
