
Find the value of \[\tan A + \tan (60 + A) - \tan (60 - A)\]
(1) 3 tan 3A
(2) tan 3A
(3) cot 3A
(4) sin 3A
Answer
511.8k+ views
Hint: To solve the given above question we must know the formulas of tan(A-B), tan(A+B), and also tan 3A. Here we need to apply LCM and also need to know the values of tan60 degree to substitute in the formula.
Complete step-by-step answer:
Here they have given four option for the given question we need to find the correct answer
Now, Consider the given question \[\tan A + \tan (60 + A) - \tan (60 - A)\]
\[ = \] tan A+\[\dfrac{{\tan 60 + \tan A}}{{1 - \tan 60.\tan A}}\]- \[\dfrac{{\tan 60 - \tan A}}{{1 + \tan 60.\tan A}}\]
[here we have applied the formula of tan(A+B) and tan(A-B)]
\[ = \]tan A+\[\dfrac{{\sqrt 3 + \tan A}}{{1 - \sqrt 3 \tan A}}\]-\[\dfrac{{\sqrt 3 - \tan A}}{{1 + \sqrt 3 \tan A}}\] [here tan 60 =\[\sqrt 3 \]]
Taking L C M we get,
\[ = \]tan A+\[\left[ {\dfrac{{(1 + \sqrt 3 \tan A)(\sqrt 3 + \tan A) - ((1 - \sqrt 3 \tan A)(\sqrt 3 - \tan A))}}{{(1 - \sqrt 3 \tan A)(1 + \sqrt 3 \tan A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{(1 + \sqrt 3 \tan A)(\sqrt 3 + \tan A) - ((1 - \sqrt 3 \tan A)(\sqrt 3 - \tan A))}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{\sqrt 3 + \tan A + 3\tan A + \sqrt 3 {{\tan }^2}A - (\sqrt 3 - \tan A - 3\tan A + \sqrt 3 {{\tan }^2}A}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{\sqrt 3 + \tan A + 3\tan A + \sqrt 3 {{\tan }^2}A - \sqrt 3 + \tan A + 3\tan A - \sqrt 3 {{\tan }^2}A}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{8\tan A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Again, Taking LCM we get
\[ = \]\[\left[ {\dfrac{{\tan A - 3{{\tan }^3}A + 8\tan A}}{{1 - 3{{\tan }^2}A}}} \right]\]
\[ = \]\[\left[ {\dfrac{{9\tan A - 3{{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Taking 3 as common in numerator we get,
\[ = \]\[3\left[ {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
\[ = \]\[3\tan 3A\]
Therefore, In the given four option (1) 3 tan3A is correct.
Hence we got the required solution
So, the correct answer is “Option (1)”.
Note: Formulas:
tan(A+B) = \[\dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\]
tan(A-B) = \[\dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]
tan 3A = \[\left[ {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent.
The angle measure is expressed in one of two units such as degrees or radians.
A degree is \[\dfrac{1}{{{{360}^{th}}}}\]of a complete rotation around a circle. Whereas, radians are alternate units used to measure angles. Sometimes they are referred to as Natural angles.
tan0=0
tan30=\[\dfrac{1}{{\sqrt 3 }}\]
tan45= 1
tan60=\[\sqrt 3 \]
tan90= \[\infty \]
[We know that L C M is the least common multiple].
Complete step-by-step answer:
Here they have given four option for the given question we need to find the correct answer
Now, Consider the given question \[\tan A + \tan (60 + A) - \tan (60 - A)\]
\[ = \] tan A+\[\dfrac{{\tan 60 + \tan A}}{{1 - \tan 60.\tan A}}\]- \[\dfrac{{\tan 60 - \tan A}}{{1 + \tan 60.\tan A}}\]
[here we have applied the formula of tan(A+B) and tan(A-B)]
\[ = \]tan A+\[\dfrac{{\sqrt 3 + \tan A}}{{1 - \sqrt 3 \tan A}}\]-\[\dfrac{{\sqrt 3 - \tan A}}{{1 + \sqrt 3 \tan A}}\] [here tan 60 =\[\sqrt 3 \]]
Taking L C M we get,
\[ = \]tan A+\[\left[ {\dfrac{{(1 + \sqrt 3 \tan A)(\sqrt 3 + \tan A) - ((1 - \sqrt 3 \tan A)(\sqrt 3 - \tan A))}}{{(1 - \sqrt 3 \tan A)(1 + \sqrt 3 \tan A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{(1 + \sqrt 3 \tan A)(\sqrt 3 + \tan A) - ((1 - \sqrt 3 \tan A)(\sqrt 3 - \tan A))}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{\sqrt 3 + \tan A + 3\tan A + \sqrt 3 {{\tan }^2}A - (\sqrt 3 - \tan A - 3\tan A + \sqrt 3 {{\tan }^2}A}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{\sqrt 3 + \tan A + 3\tan A + \sqrt 3 {{\tan }^2}A - \sqrt 3 + \tan A + 3\tan A - \sqrt 3 {{\tan }^2}A}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{8\tan A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Again, Taking LCM we get
\[ = \]\[\left[ {\dfrac{{\tan A - 3{{\tan }^3}A + 8\tan A}}{{1 - 3{{\tan }^2}A}}} \right]\]
\[ = \]\[\left[ {\dfrac{{9\tan A - 3{{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Taking 3 as common in numerator we get,
\[ = \]\[3\left[ {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
\[ = \]\[3\tan 3A\]
Therefore, In the given four option (1) 3 tan3A is correct.
Hence we got the required solution
So, the correct answer is “Option (1)”.
Note: Formulas:
tan(A+B) = \[\dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\]
tan(A-B) = \[\dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]
tan 3A = \[\left[ {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent.
The angle measure is expressed in one of two units such as degrees or radians.
A degree is \[\dfrac{1}{{{{360}^{th}}}}\]of a complete rotation around a circle. Whereas, radians are alternate units used to measure angles. Sometimes they are referred to as Natural angles.
tan0=0
tan30=\[\dfrac{1}{{\sqrt 3 }}\]
tan45= 1
tan60=\[\sqrt 3 \]
tan90= \[\infty \]
[We know that L C M is the least common multiple].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

