
Find the value of \[\tan A + \tan (60 + A) - \tan (60 - A)\]
(1) 3 tan 3A
(2) tan 3A
(3) cot 3A
(4) sin 3A
Answer
524.7k+ views
Hint: To solve the given above question we must know the formulas of tan(A-B), tan(A+B), and also tan 3A. Here we need to apply LCM and also need to know the values of tan60 degree to substitute in the formula.
Complete step-by-step answer:
Here they have given four option for the given question we need to find the correct answer
Now, Consider the given question \[\tan A + \tan (60 + A) - \tan (60 - A)\]
\[ = \] tan A+\[\dfrac{{\tan 60 + \tan A}}{{1 - \tan 60.\tan A}}\]- \[\dfrac{{\tan 60 - \tan A}}{{1 + \tan 60.\tan A}}\]
[here we have applied the formula of tan(A+B) and tan(A-B)]
\[ = \]tan A+\[\dfrac{{\sqrt 3 + \tan A}}{{1 - \sqrt 3 \tan A}}\]-\[\dfrac{{\sqrt 3 - \tan A}}{{1 + \sqrt 3 \tan A}}\] [here tan 60 =\[\sqrt 3 \]]
Taking L C M we get,
\[ = \]tan A+\[\left[ {\dfrac{{(1 + \sqrt 3 \tan A)(\sqrt 3 + \tan A) - ((1 - \sqrt 3 \tan A)(\sqrt 3 - \tan A))}}{{(1 - \sqrt 3 \tan A)(1 + \sqrt 3 \tan A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{(1 + \sqrt 3 \tan A)(\sqrt 3 + \tan A) - ((1 - \sqrt 3 \tan A)(\sqrt 3 - \tan A))}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{\sqrt 3 + \tan A + 3\tan A + \sqrt 3 {{\tan }^2}A - (\sqrt 3 - \tan A - 3\tan A + \sqrt 3 {{\tan }^2}A}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{\sqrt 3 + \tan A + 3\tan A + \sqrt 3 {{\tan }^2}A - \sqrt 3 + \tan A + 3\tan A - \sqrt 3 {{\tan }^2}A}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{8\tan A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Again, Taking LCM we get
\[ = \]\[\left[ {\dfrac{{\tan A - 3{{\tan }^3}A + 8\tan A}}{{1 - 3{{\tan }^2}A}}} \right]\]
\[ = \]\[\left[ {\dfrac{{9\tan A - 3{{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Taking 3 as common in numerator we get,
\[ = \]\[3\left[ {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
\[ = \]\[3\tan 3A\]
Therefore, In the given four option (1) 3 tan3A is correct.
Hence we got the required solution
So, the correct answer is “Option (1)”.
Note: Formulas:
tan(A+B) = \[\dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\]
tan(A-B) = \[\dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]
tan 3A = \[\left[ {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent.
The angle measure is expressed in one of two units such as degrees or radians.
A degree is \[\dfrac{1}{{{{360}^{th}}}}\]of a complete rotation around a circle. Whereas, radians are alternate units used to measure angles. Sometimes they are referred to as Natural angles.
tan0=0
tan30=\[\dfrac{1}{{\sqrt 3 }}\]
tan45= 1
tan60=\[\sqrt 3 \]
tan90= \[\infty \]
[We know that L C M is the least common multiple].
Complete step-by-step answer:
Here they have given four option for the given question we need to find the correct answer
Now, Consider the given question \[\tan A + \tan (60 + A) - \tan (60 - A)\]
\[ = \] tan A+\[\dfrac{{\tan 60 + \tan A}}{{1 - \tan 60.\tan A}}\]- \[\dfrac{{\tan 60 - \tan A}}{{1 + \tan 60.\tan A}}\]
[here we have applied the formula of tan(A+B) and tan(A-B)]
\[ = \]tan A+\[\dfrac{{\sqrt 3 + \tan A}}{{1 - \sqrt 3 \tan A}}\]-\[\dfrac{{\sqrt 3 - \tan A}}{{1 + \sqrt 3 \tan A}}\] [here tan 60 =\[\sqrt 3 \]]
Taking L C M we get,
\[ = \]tan A+\[\left[ {\dfrac{{(1 + \sqrt 3 \tan A)(\sqrt 3 + \tan A) - ((1 - \sqrt 3 \tan A)(\sqrt 3 - \tan A))}}{{(1 - \sqrt 3 \tan A)(1 + \sqrt 3 \tan A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{(1 + \sqrt 3 \tan A)(\sqrt 3 + \tan A) - ((1 - \sqrt 3 \tan A)(\sqrt 3 - \tan A))}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{\sqrt 3 + \tan A + 3\tan A + \sqrt 3 {{\tan }^2}A - (\sqrt 3 - \tan A - 3\tan A + \sqrt 3 {{\tan }^2}A}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{\sqrt 3 + \tan A + 3\tan A + \sqrt 3 {{\tan }^2}A - \sqrt 3 + \tan A + 3\tan A - \sqrt 3 {{\tan }^2}A}}{{(1 - 3{{\tan }^2}A)}}} \right]\]
\[ = \]tan A+\[\left[ {\dfrac{{8\tan A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Again, Taking LCM we get
\[ = \]\[\left[ {\dfrac{{\tan A - 3{{\tan }^3}A + 8\tan A}}{{1 - 3{{\tan }^2}A}}} \right]\]
\[ = \]\[\left[ {\dfrac{{9\tan A - 3{{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Taking 3 as common in numerator we get,
\[ = \]\[3\left[ {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
\[ = \]\[3\tan 3A\]
Therefore, In the given four option (1) 3 tan3A is correct.
Hence we got the required solution
So, the correct answer is “Option (1)”.
Note: Formulas:
tan(A+B) = \[\dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\]
tan(A-B) = \[\dfrac{{\tan A - \tan B}}{{1 + \tan A.\tan B}}\]
tan 3A = \[\left[ {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right]\]
Trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent.
The angle measure is expressed in one of two units such as degrees or radians.
A degree is \[\dfrac{1}{{{{360}^{th}}}}\]of a complete rotation around a circle. Whereas, radians are alternate units used to measure angles. Sometimes they are referred to as Natural angles.
tan0=0
tan30=\[\dfrac{1}{{\sqrt 3 }}\]
tan45= 1
tan60=\[\sqrt 3 \]
tan90= \[\infty \]
[We know that L C M is the least common multiple].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

