
Find the value of $\tan {9^0} - \tan {27^0} - \tan {63^0} + \tan {81^0}$
$
{\text{A}}{\text{. 4}} \\
{\text{B}}{\text{. 3}} \\
{\text{C}}{\text{. 2}} \\
{\text{D}}{\text{. 1}} \\
$
Answer
584.4k+ views
Hint: To solve this type of question you have to do some trigonometric transformation by seeing that the sum of two angles is 90 so these are complementary angles, hence you can transform to make the question easy. And solve further using standard trigonometric results.
Complete step-by-step answer:
We have
$\tan {9^0} - \tan {27^0} - \tan {63.0} + \tan {81^0}$
First take minus common then we get
$ = \tan {9^0} + \tan {81^0} - \left( {\tan {{27}^0} + \tan {{63}^0}} \right)$
Now we will do transformation as
$
= \tan {9^0} + \tan \left( {{{90}^0} - {9^0}} \right) - \left( {\tan {{27}^0} + \tan \left( {{{90}^0} - {{27}^0}} \right)} \right){\text{ }}\left[ {\because {{81}^0} = \left( {{{90}^0} - {9^0}} \right)} \right] \\
= \tan {9^0} + \cot {9^0} - \left( {\tan {{27}^0} + \tan {{27}^0}} \right)\left[ {\because \cot A = \tan \left( {{{90}^0} - A} \right)} \right] \\
= \dfrac{{\sin {9^0}}}{{\cos {9^0}}} + \dfrac{{\cos {9^0}}}{{\sin {9^0}}} - \left( {\dfrac{{\sin {{27}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{27}^0}}}{{\sin {{27}^0}}}} \right){\text{ }}\left[ {\because \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}} \right] \\
= \dfrac{{{{\sin }^2}{9^0} + {{\cos }^2}{9^0}}}{{\sin {9^0}.\cos {9^0}}} - \left( {\dfrac{{{{\sin }^2}{{27}^0} + {{\cos }^2}{{27}^0}}}{{\sin {{27}^0}.\cos {{27}^0}}}} \right)\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right] \\
= \dfrac{1}{{\sin {9^0}.\cos {9^0}}} - \dfrac{1}{{\sin {{27}^0}.\cos {{27}^0}}} \\
$
Now we know (sin2A= 2sinA.cosA)
This formula is very helpful so we should remember it. Whenever we get multiplication of sine and cosine with the same angle this formula should be applied.
So to apply the above formula multiply and divide by 2 on numerator and denominator.
$ = \dfrac{2}{{2.\sin {9^0}\cos {9^0}}} - \dfrac{2}{{2.\sin {{27}^0}.\cos {{27}^0}}}$
$ = \dfrac{2}{{\sin {{18}^0}}} - \dfrac{2}{{\sin {{54}^0}}} = 2\left[ {\dfrac{{\sin {{54}^0} - \sin {{18}^0}}}{{\sin {{18}^0}.\sin {{54}^0}}}} \right]$
Now we will apply the formula $\left( {\because \sin C - \sin D = 2\cos \dfrac{{C + D}}{2}.\sin \dfrac{{C - D}}{2}} \right)$
$ = 2.2\left[ {\dfrac{{\cos \dfrac{{{{54}^0} + {{18}^0}}}{2}.\sin \dfrac{{{{54}^0} - {{18}^0}}}{2}}}{{\sin {{18}^0}.\sin {{54}^0}}}} \right]$
$ = \dfrac{{2.2\cos {{36}^0}\sin {{18}^0}}}{{\sin {{18}^0}.\sin \left( {{{90}^0} - {{36}^0}} \right)}} = \dfrac{{2.2\cos {{36}^0}\sin {{18}^0}}}{{\cos {{36}^0}.\sin {{18}^0}}} = 4$
Hence option A is the correct option.
Note: Whenever we get this type of question the key concept of solving is you have to start a solution from simple trigonometric transformation and you have to use many formulas like addition to multiplication half angle formula and many more so we should remember all these to solve this type of question.
Complete step-by-step answer:
We have
$\tan {9^0} - \tan {27^0} - \tan {63.0} + \tan {81^0}$
First take minus common then we get
$ = \tan {9^0} + \tan {81^0} - \left( {\tan {{27}^0} + \tan {{63}^0}} \right)$
Now we will do transformation as
$
= \tan {9^0} + \tan \left( {{{90}^0} - {9^0}} \right) - \left( {\tan {{27}^0} + \tan \left( {{{90}^0} - {{27}^0}} \right)} \right){\text{ }}\left[ {\because {{81}^0} = \left( {{{90}^0} - {9^0}} \right)} \right] \\
= \tan {9^0} + \cot {9^0} - \left( {\tan {{27}^0} + \tan {{27}^0}} \right)\left[ {\because \cot A = \tan \left( {{{90}^0} - A} \right)} \right] \\
= \dfrac{{\sin {9^0}}}{{\cos {9^0}}} + \dfrac{{\cos {9^0}}}{{\sin {9^0}}} - \left( {\dfrac{{\sin {{27}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{27}^0}}}{{\sin {{27}^0}}}} \right){\text{ }}\left[ {\because \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}} \right] \\
= \dfrac{{{{\sin }^2}{9^0} + {{\cos }^2}{9^0}}}{{\sin {9^0}.\cos {9^0}}} - \left( {\dfrac{{{{\sin }^2}{{27}^0} + {{\cos }^2}{{27}^0}}}{{\sin {{27}^0}.\cos {{27}^0}}}} \right)\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right] \\
= \dfrac{1}{{\sin {9^0}.\cos {9^0}}} - \dfrac{1}{{\sin {{27}^0}.\cos {{27}^0}}} \\
$
Now we know (sin2A= 2sinA.cosA)
This formula is very helpful so we should remember it. Whenever we get multiplication of sine and cosine with the same angle this formula should be applied.
So to apply the above formula multiply and divide by 2 on numerator and denominator.
$ = \dfrac{2}{{2.\sin {9^0}\cos {9^0}}} - \dfrac{2}{{2.\sin {{27}^0}.\cos {{27}^0}}}$
$ = \dfrac{2}{{\sin {{18}^0}}} - \dfrac{2}{{\sin {{54}^0}}} = 2\left[ {\dfrac{{\sin {{54}^0} - \sin {{18}^0}}}{{\sin {{18}^0}.\sin {{54}^0}}}} \right]$
Now we will apply the formula $\left( {\because \sin C - \sin D = 2\cos \dfrac{{C + D}}{2}.\sin \dfrac{{C - D}}{2}} \right)$
$ = 2.2\left[ {\dfrac{{\cos \dfrac{{{{54}^0} + {{18}^0}}}{2}.\sin \dfrac{{{{54}^0} - {{18}^0}}}{2}}}{{\sin {{18}^0}.\sin {{54}^0}}}} \right]$
$ = \dfrac{{2.2\cos {{36}^0}\sin {{18}^0}}}{{\sin {{18}^0}.\sin \left( {{{90}^0} - {{36}^0}} \right)}} = \dfrac{{2.2\cos {{36}^0}\sin {{18}^0}}}{{\cos {{36}^0}.\sin {{18}^0}}} = 4$
Hence option A is the correct option.
Note: Whenever we get this type of question the key concept of solving is you have to start a solution from simple trigonometric transformation and you have to use many formulas like addition to multiplication half angle formula and many more so we should remember all these to solve this type of question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

