
Find the value of $\tan {9^0} - \tan {27^0} - \tan {63^0} + \tan {81^0}$
$
{\text{A}}{\text{. 4}} \\
{\text{B}}{\text{. 3}} \\
{\text{C}}{\text{. 2}} \\
{\text{D}}{\text{. 1}} \\
$
Answer
595.8k+ views
Hint: To solve this type of question you have to do some trigonometric transformation by seeing that the sum of two angles is 90 so these are complementary angles, hence you can transform to make the question easy. And solve further using standard trigonometric results.
Complete step-by-step answer:
We have
$\tan {9^0} - \tan {27^0} - \tan {63.0} + \tan {81^0}$
First take minus common then we get
$ = \tan {9^0} + \tan {81^0} - \left( {\tan {{27}^0} + \tan {{63}^0}} \right)$
Now we will do transformation as
$
= \tan {9^0} + \tan \left( {{{90}^0} - {9^0}} \right) - \left( {\tan {{27}^0} + \tan \left( {{{90}^0} - {{27}^0}} \right)} \right){\text{ }}\left[ {\because {{81}^0} = \left( {{{90}^0} - {9^0}} \right)} \right] \\
= \tan {9^0} + \cot {9^0} - \left( {\tan {{27}^0} + \tan {{27}^0}} \right)\left[ {\because \cot A = \tan \left( {{{90}^0} - A} \right)} \right] \\
= \dfrac{{\sin {9^0}}}{{\cos {9^0}}} + \dfrac{{\cos {9^0}}}{{\sin {9^0}}} - \left( {\dfrac{{\sin {{27}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{27}^0}}}{{\sin {{27}^0}}}} \right){\text{ }}\left[ {\because \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}} \right] \\
= \dfrac{{{{\sin }^2}{9^0} + {{\cos }^2}{9^0}}}{{\sin {9^0}.\cos {9^0}}} - \left( {\dfrac{{{{\sin }^2}{{27}^0} + {{\cos }^2}{{27}^0}}}{{\sin {{27}^0}.\cos {{27}^0}}}} \right)\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right] \\
= \dfrac{1}{{\sin {9^0}.\cos {9^0}}} - \dfrac{1}{{\sin {{27}^0}.\cos {{27}^0}}} \\
$
Now we know (sin2A= 2sinA.cosA)
This formula is very helpful so we should remember it. Whenever we get multiplication of sine and cosine with the same angle this formula should be applied.
So to apply the above formula multiply and divide by 2 on numerator and denominator.
$ = \dfrac{2}{{2.\sin {9^0}\cos {9^0}}} - \dfrac{2}{{2.\sin {{27}^0}.\cos {{27}^0}}}$
$ = \dfrac{2}{{\sin {{18}^0}}} - \dfrac{2}{{\sin {{54}^0}}} = 2\left[ {\dfrac{{\sin {{54}^0} - \sin {{18}^0}}}{{\sin {{18}^0}.\sin {{54}^0}}}} \right]$
Now we will apply the formula $\left( {\because \sin C - \sin D = 2\cos \dfrac{{C + D}}{2}.\sin \dfrac{{C - D}}{2}} \right)$
$ = 2.2\left[ {\dfrac{{\cos \dfrac{{{{54}^0} + {{18}^0}}}{2}.\sin \dfrac{{{{54}^0} - {{18}^0}}}{2}}}{{\sin {{18}^0}.\sin {{54}^0}}}} \right]$
$ = \dfrac{{2.2\cos {{36}^0}\sin {{18}^0}}}{{\sin {{18}^0}.\sin \left( {{{90}^0} - {{36}^0}} \right)}} = \dfrac{{2.2\cos {{36}^0}\sin {{18}^0}}}{{\cos {{36}^0}.\sin {{18}^0}}} = 4$
Hence option A is the correct option.
Note: Whenever we get this type of question the key concept of solving is you have to start a solution from simple trigonometric transformation and you have to use many formulas like addition to multiplication half angle formula and many more so we should remember all these to solve this type of question.
Complete step-by-step answer:
We have
$\tan {9^0} - \tan {27^0} - \tan {63.0} + \tan {81^0}$
First take minus common then we get
$ = \tan {9^0} + \tan {81^0} - \left( {\tan {{27}^0} + \tan {{63}^0}} \right)$
Now we will do transformation as
$
= \tan {9^0} + \tan \left( {{{90}^0} - {9^0}} \right) - \left( {\tan {{27}^0} + \tan \left( {{{90}^0} - {{27}^0}} \right)} \right){\text{ }}\left[ {\because {{81}^0} = \left( {{{90}^0} - {9^0}} \right)} \right] \\
= \tan {9^0} + \cot {9^0} - \left( {\tan {{27}^0} + \tan {{27}^0}} \right)\left[ {\because \cot A = \tan \left( {{{90}^0} - A} \right)} \right] \\
= \dfrac{{\sin {9^0}}}{{\cos {9^0}}} + \dfrac{{\cos {9^0}}}{{\sin {9^0}}} - \left( {\dfrac{{\sin {{27}^0}}}{{\cos {{27}^0}}} + \dfrac{{\cos {{27}^0}}}{{\sin {{27}^0}}}} \right){\text{ }}\left[ {\because \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}} \right] \\
= \dfrac{{{{\sin }^2}{9^0} + {{\cos }^2}{9^0}}}{{\sin {9^0}.\cos {9^0}}} - \left( {\dfrac{{{{\sin }^2}{{27}^0} + {{\cos }^2}{{27}^0}}}{{\sin {{27}^0}.\cos {{27}^0}}}} \right)\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right] \\
= \dfrac{1}{{\sin {9^0}.\cos {9^0}}} - \dfrac{1}{{\sin {{27}^0}.\cos {{27}^0}}} \\
$
Now we know (sin2A= 2sinA.cosA)
This formula is very helpful so we should remember it. Whenever we get multiplication of sine and cosine with the same angle this formula should be applied.
So to apply the above formula multiply and divide by 2 on numerator and denominator.
$ = \dfrac{2}{{2.\sin {9^0}\cos {9^0}}} - \dfrac{2}{{2.\sin {{27}^0}.\cos {{27}^0}}}$
$ = \dfrac{2}{{\sin {{18}^0}}} - \dfrac{2}{{\sin {{54}^0}}} = 2\left[ {\dfrac{{\sin {{54}^0} - \sin {{18}^0}}}{{\sin {{18}^0}.\sin {{54}^0}}}} \right]$
Now we will apply the formula $\left( {\because \sin C - \sin D = 2\cos \dfrac{{C + D}}{2}.\sin \dfrac{{C - D}}{2}} \right)$
$ = 2.2\left[ {\dfrac{{\cos \dfrac{{{{54}^0} + {{18}^0}}}{2}.\sin \dfrac{{{{54}^0} - {{18}^0}}}{2}}}{{\sin {{18}^0}.\sin {{54}^0}}}} \right]$
$ = \dfrac{{2.2\cos {{36}^0}\sin {{18}^0}}}{{\sin {{18}^0}.\sin \left( {{{90}^0} - {{36}^0}} \right)}} = \dfrac{{2.2\cos {{36}^0}\sin {{18}^0}}}{{\cos {{36}^0}.\sin {{18}^0}}} = 4$
Hence option A is the correct option.
Note: Whenever we get this type of question the key concept of solving is you have to start a solution from simple trigonometric transformation and you have to use many formulas like addition to multiplication half angle formula and many more so we should remember all these to solve this type of question.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

