
Find the value of $ \tan {{15}^{\circ }} $ ?
(a) $ 2+\sqrt{3} $
(b) $ 2-\sqrt{3} $
(c) $ \sqrt{3}-2 $
(d) $ \dfrac{1}{2-\sqrt{5}} $
Answer
567.9k+ views
Hint: We started solving the problem by writing $ \tan {{15}^{\circ }} $ as $ \tan \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ . We then make use of the fact that $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\left( \tan A\times \tan B \right)} $ , $ \tan {{45}^{\circ }}=1 $ and $ \tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}} $ to proceed through the problem. We then multiply the numerator and denominator with the conjugate rational surd of denominator to proceed further through the problem. We then make the necessary calculations to get the required value of $ \tan {{15}^{\circ }} $ .
Complete step by step answer:
According to the problem, we are asked to find the value of $ \tan {{15}^{\circ }} $ .
We know that $ \tan {{15}^{\circ }}=\tan \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ ---(1).
We can see that $ \tan \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ resembles $ \tan \left( A-B \right) $ . We know that $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\left( \tan A\times \tan B \right)} $ . Let us use this result in equation (1).
So, we get $ \tan {{15}^{\circ }}=\dfrac{\tan {{45}^{\circ }}-\tan {{30}^{\circ }}}{1+\left( \tan {{45}^{\circ }}\times \tan {{30}^{\circ }} \right)} $ ---(2).
We know that $ \tan {{45}^{\circ }}=1 $ and $ \tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}} $ . Let us substitute this results in equation (2).
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+\left( 1\times \dfrac{1}{\sqrt{3}} \right)} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{1+\dfrac{1}{\sqrt{3}}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+1}{\sqrt{3}}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1} $ ---(3).
Let us multiply the numerator and denominator of equation (3) with $ \sqrt{3}-1 $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\times \dfrac{\sqrt{3}-1}{\sqrt{3}-1} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{{{\left( \sqrt{3}-1 \right)}^{2}}}{\left( \sqrt{3}+1 \right)\times \left( \sqrt{3}-1 \right)} $ ---(4).
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ and $ \left( a-b \right)\times \left( a+b \right)={{a}^{2}}-{{b}^{2}} $ . Let us use these results in equation (4).
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{{{\left( \sqrt{3} \right)}^{2}}+{{\left( 1 \right)}^{2}}-2\left( \sqrt{3} \right)\left( 1 \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{3+1-2\sqrt{3}}{3-1} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{4-2\sqrt{3}}{2} $ .
$ \Rightarrow \tan {{15}^{\circ }}=2-\sqrt{3} $ .
So, we have found the value of $ \tan {{15}^{\circ }} $ as $ 2-\sqrt{3} $ .
$\therefore$ The correct option for the given problem is (b).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the given problem as shown below:
We know that $ \tan {{15}^{\circ }}=\tan \left( {{60}^{\circ }}-{{45}^{\circ }} \right) $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\tan {{60}^{\circ }}-\tan {{45}^{\circ }}}{1+\left( \tan {{60}^{\circ }}\times \tan {{45}^{\circ }} \right)} $ ---(2).
We know that $ \tan {{45}^{\circ }}=1 $ and $ \tan {{60}^{\circ }}=\sqrt{3} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{1+\left( \sqrt{3}\times 1 \right)} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{1+\sqrt{3}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1} $ .
Let us multiply the numerator and denominator with $ \sqrt{3}-1 $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\times \dfrac{\sqrt{3}-1}{\sqrt{3}-1} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{{{\left( \sqrt{3}-1 \right)}^{2}}}{\left( \sqrt{3}+1 \right)\times \left( \sqrt{3}-1 \right)} $ .
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ and $ \left( a-b \right)\times \left( a+b \right)={{a}^{2}}-{{b}^{2}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{{{\left( \sqrt{3} \right)}^{2}}+{{\left( 1 \right)}^{2}}-2\left( \sqrt{3} \right)\left( 1 \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{3+1-2\sqrt{3}}{3-1} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{4-2\sqrt{3}}{2} $ .
$ \Rightarrow \tan {{15}^{\circ }}=2-\sqrt{3} $ .
So, we have found the value of $ \tan {{15}^{\circ }} $ as $ 2-\sqrt{3} $ .
Complete step by step answer:
According to the problem, we are asked to find the value of $ \tan {{15}^{\circ }} $ .
We know that $ \tan {{15}^{\circ }}=\tan \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ ---(1).
We can see that $ \tan \left( {{45}^{\circ }}-{{30}^{\circ }} \right) $ resembles $ \tan \left( A-B \right) $ . We know that $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\left( \tan A\times \tan B \right)} $ . Let us use this result in equation (1).
So, we get $ \tan {{15}^{\circ }}=\dfrac{\tan {{45}^{\circ }}-\tan {{30}^{\circ }}}{1+\left( \tan {{45}^{\circ }}\times \tan {{30}^{\circ }} \right)} $ ---(2).
We know that $ \tan {{45}^{\circ }}=1 $ and $ \tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}} $ . Let us substitute this results in equation (2).
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+\left( 1\times \dfrac{1}{\sqrt{3}} \right)} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{1+\dfrac{1}{\sqrt{3}}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+1}{\sqrt{3}}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1} $ ---(3).
Let us multiply the numerator and denominator of equation (3) with $ \sqrt{3}-1 $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\times \dfrac{\sqrt{3}-1}{\sqrt{3}-1} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{{{\left( \sqrt{3}-1 \right)}^{2}}}{\left( \sqrt{3}+1 \right)\times \left( \sqrt{3}-1 \right)} $ ---(4).
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ and $ \left( a-b \right)\times \left( a+b \right)={{a}^{2}}-{{b}^{2}} $ . Let us use these results in equation (4).
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{{{\left( \sqrt{3} \right)}^{2}}+{{\left( 1 \right)}^{2}}-2\left( \sqrt{3} \right)\left( 1 \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{3+1-2\sqrt{3}}{3-1} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{4-2\sqrt{3}}{2} $ .
$ \Rightarrow \tan {{15}^{\circ }}=2-\sqrt{3} $ .
So, we have found the value of $ \tan {{15}^{\circ }} $ as $ 2-\sqrt{3} $ .
$\therefore$ The correct option for the given problem is (b).
Note:
We can see that the given problem contains a huge amount of calculation, so we need to perform each step carefully in order to avoid confusion and calculation mistakes. We can also solve the given problem as shown below:
We know that $ \tan {{15}^{\circ }}=\tan \left( {{60}^{\circ }}-{{45}^{\circ }} \right) $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\tan {{60}^{\circ }}-\tan {{45}^{\circ }}}{1+\left( \tan {{60}^{\circ }}\times \tan {{45}^{\circ }} \right)} $ ---(2).
We know that $ \tan {{45}^{\circ }}=1 $ and $ \tan {{60}^{\circ }}=\sqrt{3} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{1+\left( \sqrt{3}\times 1 \right)} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{1+\sqrt{3}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1} $ .
Let us multiply the numerator and denominator with $ \sqrt{3}-1 $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\times \dfrac{\sqrt{3}-1}{\sqrt{3}-1} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{{{\left( \sqrt{3}-1 \right)}^{2}}}{\left( \sqrt{3}+1 \right)\times \left( \sqrt{3}-1 \right)} $ .
We know that $ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab $ and $ \left( a-b \right)\times \left( a+b \right)={{a}^{2}}-{{b}^{2}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{{{\left( \sqrt{3} \right)}^{2}}+{{\left( 1 \right)}^{2}}-2\left( \sqrt{3} \right)\left( 1 \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}}} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{3+1-2\sqrt{3}}{3-1} $ .
$ \Rightarrow \tan {{15}^{\circ }}=\dfrac{4-2\sqrt{3}}{2} $ .
$ \Rightarrow \tan {{15}^{\circ }}=2-\sqrt{3} $ .
So, we have found the value of $ \tan {{15}^{\circ }} $ as $ 2-\sqrt{3} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

