
Find the value of $ \sqrt[5]{{.00000165}} $ , given $ \log 165 = 2.2174839 $ , $ \log 697424 = 5.8434968 $ .
Answer
525.9k+ views
Hint: We have to find the fifth root of the number $ 0.00000165 $ which would be a decimal number which when multiplied by itself $ 5 $ times would give the original number. Such questions can be solved using a logarithmic function. Logarithmic function is defined as,
if $ {a^y} = x $ , then $ {\log _a}x = y $ .
Without any base given, we assume the base to be $ 10 $ . We will also use some properties of logarithmic function. Some values are provided in the question which is to be used while solving.
Complete step by step solution:
We have to find the fifth root of the number $ 0.00000165 $
Let us assume $ \sqrt[5]{{.00000165}} = x $
Then we can raise power $ 5 $ on both sides and simplify as follows,
$
{\left( {\sqrt[5]{{.00000165}}} \right)^5} = {x^5} \\
\Rightarrow 0.00000165 = {x^5} \\
\Rightarrow \dfrac{{165}}{{100000000}} = {x^5} \\
\Rightarrow 165 \times {10^{ - 8}} = {x^5} \;
$
Now we take $ \log $ on both sides. Taking $ \log $ means putting both the sides under logarithmic function.
$ \Rightarrow \log \left( {165 \times {{10}^{ - 8}}} \right) = \log \left( {{x^5}} \right) $
Here we will use a property of log function given as,
$ \log (a \times b) = \log a + \log b $
Thus, we can write,
$
\log \left( {165 \times {{10}^{ - 8}}} \right) = \log \left( {165} \right) + \log \left( {{{10}^{ - 8}}} \right) \\
\Rightarrow \log \left( {165} \right) + \log \left( {{{10}^{ - 8}}} \right) = \log \left( {{x^5}} \right) \;
$
Here again we will use a property of log function given as,
$ \log ({a^b}) = b\log a $
Thus,
$
\log \left( {{{10}^{ - 8}}} \right) = - 8\log 10 \\
\log \left( {{x^5}} \right) = 5\log x \;
$
Thus we can write,
$
\log \left( {165} \right) + \log \left( {{{10}^{ - 8}}} \right) = \log \left( {{x^5}} \right) \\
\Rightarrow \log \left( {165} \right) - 8\log 10 = 5\log x \;
$
We have been given the value $ \log 165 = 2.2174839 $
Also, we know from basic logarithmic property, $ \log 10 = 1 $
\[
\Rightarrow 2.2174839 - 8 = 5\log \left( x \right) \\
\Rightarrow 5\log x = - 5.7825161 \\
\Rightarrow \log x = \dfrac{{ - 5.7825161}}{5} = - 1.15650322 \;
\]
In the question we have been given the value of $ \log 697424 = 5.8434968 $ . We will try to use this value to find the value of $ x $ .
We will add $ 7 $ to both sides of the equation.
\[
\Rightarrow \log x + 7 = - 1.15650322 + 7 \\
\Rightarrow \log x + \log {10^7} = 5.8434968 \\
\Rightarrow \log \left( {{{10}^7}x} \right) = \log 5.8434968 \\
\Rightarrow {10^7}x = 697424 \\
\Rightarrow x = 0.0697424 \;
\]
Thus, we get the value of $ x $ as \[0.0697424\]
Hence, $ \sqrt[5]{{.00000165}} = 0.0697424 $
So, the correct answer is “0.0697424”.
Note: We use the properties of the logarithmic function to find the value of fifth root of the given decimal number. We could have also calculated the value of $ x $ as $ antilog\left( { - 1.15650322} \right) $ . While solving a problem it is important to take note of the information given and use them in the solution. We can also check the solution as by multiplying the result by itself $ 5 $ times it should yield the original number, i.e. \[{\left( {0.0697424} \right)^5} = 0.00000165\].
if $ {a^y} = x $ , then $ {\log _a}x = y $ .
Without any base given, we assume the base to be $ 10 $ . We will also use some properties of logarithmic function. Some values are provided in the question which is to be used while solving.
Complete step by step solution:
We have to find the fifth root of the number $ 0.00000165 $
Let us assume $ \sqrt[5]{{.00000165}} = x $
Then we can raise power $ 5 $ on both sides and simplify as follows,
$
{\left( {\sqrt[5]{{.00000165}}} \right)^5} = {x^5} \\
\Rightarrow 0.00000165 = {x^5} \\
\Rightarrow \dfrac{{165}}{{100000000}} = {x^5} \\
\Rightarrow 165 \times {10^{ - 8}} = {x^5} \;
$
Now we take $ \log $ on both sides. Taking $ \log $ means putting both the sides under logarithmic function.
$ \Rightarrow \log \left( {165 \times {{10}^{ - 8}}} \right) = \log \left( {{x^5}} \right) $
Here we will use a property of log function given as,
$ \log (a \times b) = \log a + \log b $
Thus, we can write,
$
\log \left( {165 \times {{10}^{ - 8}}} \right) = \log \left( {165} \right) + \log \left( {{{10}^{ - 8}}} \right) \\
\Rightarrow \log \left( {165} \right) + \log \left( {{{10}^{ - 8}}} \right) = \log \left( {{x^5}} \right) \;
$
Here again we will use a property of log function given as,
$ \log ({a^b}) = b\log a $
Thus,
$
\log \left( {{{10}^{ - 8}}} \right) = - 8\log 10 \\
\log \left( {{x^5}} \right) = 5\log x \;
$
Thus we can write,
$
\log \left( {165} \right) + \log \left( {{{10}^{ - 8}}} \right) = \log \left( {{x^5}} \right) \\
\Rightarrow \log \left( {165} \right) - 8\log 10 = 5\log x \;
$
We have been given the value $ \log 165 = 2.2174839 $
Also, we know from basic logarithmic property, $ \log 10 = 1 $
\[
\Rightarrow 2.2174839 - 8 = 5\log \left( x \right) \\
\Rightarrow 5\log x = - 5.7825161 \\
\Rightarrow \log x = \dfrac{{ - 5.7825161}}{5} = - 1.15650322 \;
\]
In the question we have been given the value of $ \log 697424 = 5.8434968 $ . We will try to use this value to find the value of $ x $ .
We will add $ 7 $ to both sides of the equation.
\[
\Rightarrow \log x + 7 = - 1.15650322 + 7 \\
\Rightarrow \log x + \log {10^7} = 5.8434968 \\
\Rightarrow \log \left( {{{10}^7}x} \right) = \log 5.8434968 \\
\Rightarrow {10^7}x = 697424 \\
\Rightarrow x = 0.0697424 \;
\]
Thus, we get the value of $ x $ as \[0.0697424\]
Hence, $ \sqrt[5]{{.00000165}} = 0.0697424 $
So, the correct answer is “0.0697424”.
Note: We use the properties of the logarithmic function to find the value of fifth root of the given decimal number. We could have also calculated the value of $ x $ as $ antilog\left( { - 1.15650322} \right) $ . While solving a problem it is important to take note of the information given and use them in the solution. We can also check the solution as by multiplying the result by itself $ 5 $ times it should yield the original number, i.e. \[{\left( {0.0697424} \right)^5} = 0.00000165\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

