
Find the value of $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } $.
(A) $\sqrt 5 + 1$ (B) $\sqrt 3 + \sqrt 2 $ (C) $\sqrt 3 + 1$ (D) $\sqrt 5 + \sqrt 2 $
Answer
602.7k+ views
Hint: The number $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } $ is an irrational number. Assume it to be some variable irrational number and then solve by squaring both sides.
The number given in the question is an irrational number. Its square root is also an irrational number.
Thus, let $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } = \sqrt a + \sqrt b $. We know that the cube root of 125 is 5. So, we’ll get:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt {5 + \sqrt {24} } $
Squaring both sides, we’ll get:
$
\Rightarrow {\left( {\sqrt a + \sqrt b } \right)^2} = {\left( {\sqrt {5 + \sqrt {24} } } \right)^2}, \\
\Rightarrow a + b + 2\sqrt {ab} = 5 + \sqrt {24} .....(i) \\
$
Now, equating rational parts on both sides, we’ll get:
$ \Rightarrow a + b = 5$,
Similarly equating irrational parts on both sides, we have:
$
\Rightarrow 2\sqrt {ab} = \sqrt {24} , \\
\Rightarrow 4ab = 24, \\
\Rightarrow ab = 6 .....(ii) \\
$
Putting $b = 5 - a$ from equation $(i)$, we’ll get:
$
\Rightarrow a\left( {5 - a} \right) = 6, \\
\Rightarrow 5a - {a^2} = 6, \\
\Rightarrow {a^2} - 5a + 6 = 0 \\
$
This is a quadratic equation in a. We will use factorization method to solve it:
$
\Rightarrow {a^2} - 5a + 6 = 0, \\
\Rightarrow {a^2} - 3a - 2a + 6 = 0, \\
\Rightarrow a\left( {a - 3} \right) - 2\left( {a - 3} \right) - 0, \\
\Rightarrow \left( {a - 2} \right)\left( {a - 3} \right) = 0, \\
$
$ \Rightarrow a = 2$ or $a = 3$
From equation $(ii)$, we have $ab = 6$.
If we consider $a = 2$, we will get $b = 3$ and our number will be:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt 2 + \sqrt 3 $
And if we consider $a = 3$, we will get $b = 2$ and our number will be:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt 3 + \sqrt 2 $
Therefore the square root $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } $ is $\sqrt 3 + \sqrt 2 $. (B) is the correct option.
Note: If we are facing some difficulty over solving the quadratic equation $a{x^2} + bx + c = 0$by factorization method, we can also use formula for finding its roots:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
The number given in the question is an irrational number. Its square root is also an irrational number.
Thus, let $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } = \sqrt a + \sqrt b $. We know that the cube root of 125 is 5. So, we’ll get:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt {5 + \sqrt {24} } $
Squaring both sides, we’ll get:
$
\Rightarrow {\left( {\sqrt a + \sqrt b } \right)^2} = {\left( {\sqrt {5 + \sqrt {24} } } \right)^2}, \\
\Rightarrow a + b + 2\sqrt {ab} = 5 + \sqrt {24} .....(i) \\
$
Now, equating rational parts on both sides, we’ll get:
$ \Rightarrow a + b = 5$,
Similarly equating irrational parts on both sides, we have:
$
\Rightarrow 2\sqrt {ab} = \sqrt {24} , \\
\Rightarrow 4ab = 24, \\
\Rightarrow ab = 6 .....(ii) \\
$
Putting $b = 5 - a$ from equation $(i)$, we’ll get:
$
\Rightarrow a\left( {5 - a} \right) = 6, \\
\Rightarrow 5a - {a^2} = 6, \\
\Rightarrow {a^2} - 5a + 6 = 0 \\
$
This is a quadratic equation in a. We will use factorization method to solve it:
$
\Rightarrow {a^2} - 5a + 6 = 0, \\
\Rightarrow {a^2} - 3a - 2a + 6 = 0, \\
\Rightarrow a\left( {a - 3} \right) - 2\left( {a - 3} \right) - 0, \\
\Rightarrow \left( {a - 2} \right)\left( {a - 3} \right) = 0, \\
$
$ \Rightarrow a = 2$ or $a = 3$
From equation $(ii)$, we have $ab = 6$.
If we consider $a = 2$, we will get $b = 3$ and our number will be:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt 2 + \sqrt 3 $
And if we consider $a = 3$, we will get $b = 2$ and our number will be:
$ \Rightarrow \sqrt a + \sqrt b = \sqrt 3 + \sqrt 2 $
Therefore the square root $\sqrt {\sqrt[3]{{125}} + \sqrt {24} } $ is $\sqrt 3 + \sqrt 2 $. (B) is the correct option.
Note: If we are facing some difficulty over solving the quadratic equation $a{x^2} + bx + c = 0$by factorization method, we can also use formula for finding its roots:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Full form of MODEM?

What is a numerical label assigned to each device in a network?

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is 1 divided by 0 class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Today is Monday After 61 days it will be aWednesda-class-8-maths-CBSE

Write a letter to your class teacher asking for 2 days class 8 english CBSE

