
Find the value of ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{r}{1.3.5..........\left( 2r+1 \right)}}$ ?
Answer
578.1k+ views
Hint: For answering this question we will simplify and expand this ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{r}{1.3.5..........\left( 2r+1 \right)}}$ step by step and cancel the common terms and find the value of ${{S}_{n}}$ . While expanding we will multiply and divide the equation with 2 and add and subtract 1 in the numerator and expand it and observe and cancel all the common terms.
Complete step by step answer:
We need to simplify the given ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{r}{1.3.5..........\left( 2r+1 \right)}}$. We need to find the value of ${{S}_{n}}$. Let us multiply and divide the given value with 2 after this we will have ${{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\dfrac{2r}{1.3.5..........\left( 2r+1 \right)}}$ .
Let us add and subtract 1 to the given value after this we will have ${{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\dfrac{2r+1-1}{1.3.5..........\left( 2r+1 \right)}}$ .
Let us expand this in 2 terms ${{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\left( \dfrac{2r+1}{1.3.5..........\left( 2r+1 \right)}-\dfrac{1}{1.3.5.......\left( 2r+1 \right)} \right)}$ .
Let us cancel the common term $\left( 2r+1 \right)$ in numerator and denominator in the equation we have ${{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\left( \dfrac{1}{1.3.5..........\left( 2r-1 \right)}-\dfrac{1}{1.3.5.......\left( 2r+1 \right)} \right)}$ .
Let us simplify this ${{S}_{n}}=\dfrac{1}{2}\left( \sum\limits_{r=1}^{n}{\dfrac{1}{1.3.5..........\left( 2r-1 \right)}}-\sum\limits_{r=1}^{n}{\dfrac{1}{1.3.5..........\left( 2r+1 \right)}} \right)$ .
Let us expand the equation we have ${{S}_{n}}=\dfrac{1}{2}\left[ \left( 1+\dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n-1 \right)} \right)-\left( \dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n+1 \right)} \right) \right]$.
If we observe this all terms are common in both the terms except 2 terms one term in each.
Let us cancel them and have the simplified equation. We will have ${{S}_{n}}=\dfrac{1}{2}\left( 1-\dfrac{1}{1.3.5.......\left( 2n+1 \right)} \right)$ .
Now we will end up with a conclusion having the value of ${{S}_{n}}=\dfrac{1}{2}\left( 1-\dfrac{1}{1.3.5.......\left( 2n+1 \right)} \right)$ for ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{r}{1.3.5..........\left( 2r+1 \right)}}$ .
Note: While answering this in the step of expanding the terms we should take care that the expansion comes to be ${{S}_{n}}=\dfrac{1}{2}\left[ \left( 1+\dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n-1 \right)} \right)-\left( \dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n+1 \right)} \right) \right]$ not ${{S}_{n}}=\dfrac{1}{2}\left[ \left( 1+\dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n-1 \right)} \right)-\left( 1+\dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n+1 \right)} \right) \right]$ . If we write this by mistake we will end up having a wrong conclusion as ${{S}_{n}}=\dfrac{1}{2}\left( -\dfrac{1}{1.3.5.......\left( 2n+1 \right)} \right)$ . We can observe that this is a completely wrong answer.
Complete step by step answer:
We need to simplify the given ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{r}{1.3.5..........\left( 2r+1 \right)}}$. We need to find the value of ${{S}_{n}}$. Let us multiply and divide the given value with 2 after this we will have ${{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\dfrac{2r}{1.3.5..........\left( 2r+1 \right)}}$ .
Let us add and subtract 1 to the given value after this we will have ${{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\dfrac{2r+1-1}{1.3.5..........\left( 2r+1 \right)}}$ .
Let us expand this in 2 terms ${{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\left( \dfrac{2r+1}{1.3.5..........\left( 2r+1 \right)}-\dfrac{1}{1.3.5.......\left( 2r+1 \right)} \right)}$ .
Let us cancel the common term $\left( 2r+1 \right)$ in numerator and denominator in the equation we have ${{S}_{n}}=\dfrac{1}{2}\sum\limits_{r=1}^{n}{\left( \dfrac{1}{1.3.5..........\left( 2r-1 \right)}-\dfrac{1}{1.3.5.......\left( 2r+1 \right)} \right)}$ .
Let us simplify this ${{S}_{n}}=\dfrac{1}{2}\left( \sum\limits_{r=1}^{n}{\dfrac{1}{1.3.5..........\left( 2r-1 \right)}}-\sum\limits_{r=1}^{n}{\dfrac{1}{1.3.5..........\left( 2r+1 \right)}} \right)$ .
Let us expand the equation we have ${{S}_{n}}=\dfrac{1}{2}\left[ \left( 1+\dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n-1 \right)} \right)-\left( \dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n+1 \right)} \right) \right]$.
If we observe this all terms are common in both the terms except 2 terms one term in each.
Let us cancel them and have the simplified equation. We will have ${{S}_{n}}=\dfrac{1}{2}\left( 1-\dfrac{1}{1.3.5.......\left( 2n+1 \right)} \right)$ .
Now we will end up with a conclusion having the value of ${{S}_{n}}=\dfrac{1}{2}\left( 1-\dfrac{1}{1.3.5.......\left( 2n+1 \right)} \right)$ for ${{S}_{n}}=\sum\limits_{r=1}^{n}{\dfrac{r}{1.3.5..........\left( 2r+1 \right)}}$ .
Note: While answering this in the step of expanding the terms we should take care that the expansion comes to be ${{S}_{n}}=\dfrac{1}{2}\left[ \left( 1+\dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n-1 \right)} \right)-\left( \dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n+1 \right)} \right) \right]$ not ${{S}_{n}}=\dfrac{1}{2}\left[ \left( 1+\dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n-1 \right)} \right)-\left( 1+\dfrac{1}{3}+\dfrac{1}{3.5}+.......+\dfrac{1}{1.3.5.........\left( 2n+1 \right)} \right) \right]$ . If we write this by mistake we will end up having a wrong conclusion as ${{S}_{n}}=\dfrac{1}{2}\left( -\dfrac{1}{1.3.5.......\left( 2n+1 \right)} \right)$ . We can observe that this is a completely wrong answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

