
How do you find the value of $\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$?
Answer
491.1k+ views
Hint: To find the value of given trigonometric function we will use trigonometric identity ${\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(y) = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$. After implementing this identity we will find the value of the $\sin $ function.
Complete step by step answer:
Here we are given to simplify the term $\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$
First, we solve $\left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$
We know that
${\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(y) = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$
Putting $x = \dfrac{1}{2}$ and $y = \dfrac{1}{3}$ in the above formula. We get,
$ \Rightarrow $$\left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2} + \dfrac{1}{3}}}{{1 - \dfrac{1}{2} \times \dfrac{1}{3}}}} \right)$
Simplifying the above equation. We get,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{3 + 2}}{6}}}{{1 - \dfrac{1}{6}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{5}{6}}}{{\dfrac{{6 - 1}}{6}}}} \right)$
Further solving the above equation. We get,
$ \Rightarrow $${\tan ^{ - 1}}\left( {\dfrac{{\dfrac{5}{6}}}{{\dfrac{5}{6}}}} \right)$$ = {\tan ^{ - 1}}\left( {\dfrac{5}{6} \times \dfrac{6}{5}} \right)$
$ \Rightarrow {\tan ^{ - 1}}(1)$
Let ${\tan ^{ - 1}}(1) = A$
So, $\tan (A) = 1$
We know that $\tan (45^\circ ) = 1$
Here, we get $A = 45^\circ $
Therefore, ${\tan ^{ - 1}}(1) = 45^\circ $
So, $\left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$$ = 45^\circ $
Therefore,
$ \Rightarrow $$\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$$ = \sin (45^\circ )$
We know that $\sin (45^\circ ) = \dfrac{1}{{\sqrt 2 }}$
Therefore, we get
$\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) = \dfrac{1}{{\sqrt 2 }}$
Hence, the value of $\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$ is equal to $\dfrac{1}{{\sqrt 2 }}$.
Note: In this types of problems the student must remember the basic trigonometric identities and the value of angles of trigonometric function such as $\tan (45^\circ ) = 1$ and $\sin (45^\circ ) = \dfrac{1}{{\sqrt 2 }}$.
In these types of problems first reduce the function by using different trigonometric identities and then solve it. After reducing it will be easier to solve the problem.
Complete step by step answer:
Here we are given to simplify the term $\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$
First, we solve $\left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$
We know that
${\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(y) = {\tan ^{ - 1}}\left( {\dfrac{{x + y}}{{1 - xy}}} \right)$
Putting $x = \dfrac{1}{2}$ and $y = \dfrac{1}{3}$ in the above formula. We get,
$ \Rightarrow $$\left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{2} + \dfrac{1}{3}}}{{1 - \dfrac{1}{2} \times \dfrac{1}{3}}}} \right)$
Simplifying the above equation. We get,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{3 + 2}}{6}}}{{1 - \dfrac{1}{6}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{5}{6}}}{{\dfrac{{6 - 1}}{6}}}} \right)$
Further solving the above equation. We get,
$ \Rightarrow $${\tan ^{ - 1}}\left( {\dfrac{{\dfrac{5}{6}}}{{\dfrac{5}{6}}}} \right)$$ = {\tan ^{ - 1}}\left( {\dfrac{5}{6} \times \dfrac{6}{5}} \right)$
$ \Rightarrow {\tan ^{ - 1}}(1)$
Let ${\tan ^{ - 1}}(1) = A$
So, $\tan (A) = 1$
We know that $\tan (45^\circ ) = 1$
Here, we get $A = 45^\circ $
Therefore, ${\tan ^{ - 1}}(1) = 45^\circ $
So, $\left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$$ = 45^\circ $
Therefore,
$ \Rightarrow $$\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$$ = \sin (45^\circ )$
We know that $\sin (45^\circ ) = \dfrac{1}{{\sqrt 2 }}$
Therefore, we get
$\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right) = \dfrac{1}{{\sqrt 2 }}$
Hence, the value of $\sin \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{2}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{3}} \right)} \right)$ is equal to $\dfrac{1}{{\sqrt 2 }}$.
Note: In this types of problems the student must remember the basic trigonometric identities and the value of angles of trigonometric function such as $\tan (45^\circ ) = 1$ and $\sin (45^\circ ) = \dfrac{1}{{\sqrt 2 }}$.
In these types of problems first reduce the function by using different trigonometric identities and then solve it. After reducing it will be easier to solve the problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

