
Find the value of $ \sin \left( -\dfrac{11\pi }{3} \right) $ .
Answer
552.9k+ views
Hint: We have to find the sine of a negative angle. We will use the identity $ \sin \left( -x \right)=-\sin x $ . Then we will rewrite the angle as a difference of two values. After that, we will use the formula for the difference of angles. This formula is given as $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ . The values of the trigonometric functions for the standard angles will be used to obtain the required answer.
Complete step by step answer:
We know that $ \sin \left( -x \right)=-\sin x $ . Therefore, we can write the trigonometric function with negative angle in the following manner,
$ \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{11\pi }{3} \right) $
Now, we can write $ 11\pi =12\pi -1\pi $ . Substituting this in the above expression, we get
$ \begin{align}
& \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{12\pi -\pi }{3} \right) \\
& \Rightarrow \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{12\pi }{3}-\dfrac{\pi }{3} \right) \\
& \therefore \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( 4\pi -\dfrac{\pi }{3} \right)....(i) \\
\end{align} $
We know that if we have a difference of angles, then the trigonometric function can be written using the following formula,
$ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $
Substituting $ A=4\pi $ and $ B=\dfrac{\pi }{3} $ in the above formula, we get the following
$ \sin \left( 4\pi -\dfrac{\pi }{3} \right)=\sin 4\pi \cos \dfrac{\pi }{3}-\cos 4\pi \sin \dfrac{\pi }{3} $
Let us look at the sine and cosine values for angles $ 4\pi $ and $ \dfrac{\pi }{3} $ . We know that $ \sin n\pi =0 $ for any integer $ n $ . We also know that $ \cos n\pi =1 $ when $ n $ is an even integer and $ \cos n\pi =-1 $ when $ n $ is an odd integer. So, $ \sin 4\pi =0 $ and $ \cos 4\pi =1 $ . We know that $ \sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2} $ and $ \cos \dfrac{\pi }{3}=\dfrac{1}{2} $ . Substituting these values in the above equation, we get
$ \begin{align}
& \sin \left( 4\pi -\dfrac{\pi }{3} \right)=0\times \dfrac{1}{2}-1\times \dfrac{\sqrt{3}}{2} \\
& \therefore \sin \left( 4\pi -\dfrac{\pi }{3} \right)=-\dfrac{\sqrt{3}}{2} \\
\end{align} $
Substituting this value in equation $ (i) $ , we get
$ \begin{align}
& \sin \left( -\dfrac{11\pi }{3} \right)=-\left( -\dfrac{\sqrt{3}}{2} \right) \\
& \therefore \sin \left( -\dfrac{11\pi }{3} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align} $
Note:
We should be familiar with the values of trigonometric functions of standard angles for such type of questions. Instead of using the formula for $ \sin \left( A-B \right) $ , we can solve this question by using another method. We can determine the quadrant in which the angle $ \left( 4\pi -\dfrac{\pi }{3} \right) $ lies. We can see that it lies in the fourth quadrant. In the fourth quadrant, only the cosine values are positive. Therefore, we get that $ \sin \left( 4\pi -\dfrac{\pi }{3} \right)=-\sin \dfrac{\pi }{3}=-\dfrac{\sqrt{3}}{2} $ , which is the same value we found using the formula for $ \sin \left( A-B \right) $ .
Complete step by step answer:
We know that $ \sin \left( -x \right)=-\sin x $ . Therefore, we can write the trigonometric function with negative angle in the following manner,
$ \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{11\pi }{3} \right) $
Now, we can write $ 11\pi =12\pi -1\pi $ . Substituting this in the above expression, we get
$ \begin{align}
& \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{12\pi -\pi }{3} \right) \\
& \Rightarrow \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{12\pi }{3}-\dfrac{\pi }{3} \right) \\
& \therefore \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( 4\pi -\dfrac{\pi }{3} \right)....(i) \\
\end{align} $
We know that if we have a difference of angles, then the trigonometric function can be written using the following formula,
$ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $
Substituting $ A=4\pi $ and $ B=\dfrac{\pi }{3} $ in the above formula, we get the following
$ \sin \left( 4\pi -\dfrac{\pi }{3} \right)=\sin 4\pi \cos \dfrac{\pi }{3}-\cos 4\pi \sin \dfrac{\pi }{3} $
Let us look at the sine and cosine values for angles $ 4\pi $ and $ \dfrac{\pi }{3} $ . We know that $ \sin n\pi =0 $ for any integer $ n $ . We also know that $ \cos n\pi =1 $ when $ n $ is an even integer and $ \cos n\pi =-1 $ when $ n $ is an odd integer. So, $ \sin 4\pi =0 $ and $ \cos 4\pi =1 $ . We know that $ \sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2} $ and $ \cos \dfrac{\pi }{3}=\dfrac{1}{2} $ . Substituting these values in the above equation, we get
$ \begin{align}
& \sin \left( 4\pi -\dfrac{\pi }{3} \right)=0\times \dfrac{1}{2}-1\times \dfrac{\sqrt{3}}{2} \\
& \therefore \sin \left( 4\pi -\dfrac{\pi }{3} \right)=-\dfrac{\sqrt{3}}{2} \\
\end{align} $
Substituting this value in equation $ (i) $ , we get
$ \begin{align}
& \sin \left( -\dfrac{11\pi }{3} \right)=-\left( -\dfrac{\sqrt{3}}{2} \right) \\
& \therefore \sin \left( -\dfrac{11\pi }{3} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align} $
Note:
We should be familiar with the values of trigonometric functions of standard angles for such type of questions. Instead of using the formula for $ \sin \left( A-B \right) $ , we can solve this question by using another method. We can determine the quadrant in which the angle $ \left( 4\pi -\dfrac{\pi }{3} \right) $ lies. We can see that it lies in the fourth quadrant. In the fourth quadrant, only the cosine values are positive. Therefore, we get that $ \sin \left( 4\pi -\dfrac{\pi }{3} \right)=-\sin \dfrac{\pi }{3}=-\dfrac{\sqrt{3}}{2} $ , which is the same value we found using the formula for $ \sin \left( A-B \right) $ .
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

