
Find the value of $ \sin \left( -\dfrac{11\pi }{3} \right) $ .
Answer
567.3k+ views
Hint: We have to find the sine of a negative angle. We will use the identity $ \sin \left( -x \right)=-\sin x $ . Then we will rewrite the angle as a difference of two values. After that, we will use the formula for the difference of angles. This formula is given as $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ . The values of the trigonometric functions for the standard angles will be used to obtain the required answer.
Complete step by step answer:
We know that $ \sin \left( -x \right)=-\sin x $ . Therefore, we can write the trigonometric function with negative angle in the following manner,
$ \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{11\pi }{3} \right) $
Now, we can write $ 11\pi =12\pi -1\pi $ . Substituting this in the above expression, we get
$ \begin{align}
& \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{12\pi -\pi }{3} \right) \\
& \Rightarrow \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{12\pi }{3}-\dfrac{\pi }{3} \right) \\
& \therefore \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( 4\pi -\dfrac{\pi }{3} \right)....(i) \\
\end{align} $
We know that if we have a difference of angles, then the trigonometric function can be written using the following formula,
$ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $
Substituting $ A=4\pi $ and $ B=\dfrac{\pi }{3} $ in the above formula, we get the following
$ \sin \left( 4\pi -\dfrac{\pi }{3} \right)=\sin 4\pi \cos \dfrac{\pi }{3}-\cos 4\pi \sin \dfrac{\pi }{3} $
Let us look at the sine and cosine values for angles $ 4\pi $ and $ \dfrac{\pi }{3} $ . We know that $ \sin n\pi =0 $ for any integer $ n $ . We also know that $ \cos n\pi =1 $ when $ n $ is an even integer and $ \cos n\pi =-1 $ when $ n $ is an odd integer. So, $ \sin 4\pi =0 $ and $ \cos 4\pi =1 $ . We know that $ \sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2} $ and $ \cos \dfrac{\pi }{3}=\dfrac{1}{2} $ . Substituting these values in the above equation, we get
$ \begin{align}
& \sin \left( 4\pi -\dfrac{\pi }{3} \right)=0\times \dfrac{1}{2}-1\times \dfrac{\sqrt{3}}{2} \\
& \therefore \sin \left( 4\pi -\dfrac{\pi }{3} \right)=-\dfrac{\sqrt{3}}{2} \\
\end{align} $
Substituting this value in equation $ (i) $ , we get
$ \begin{align}
& \sin \left( -\dfrac{11\pi }{3} \right)=-\left( -\dfrac{\sqrt{3}}{2} \right) \\
& \therefore \sin \left( -\dfrac{11\pi }{3} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align} $
Note:
We should be familiar with the values of trigonometric functions of standard angles for such type of questions. Instead of using the formula for $ \sin \left( A-B \right) $ , we can solve this question by using another method. We can determine the quadrant in which the angle $ \left( 4\pi -\dfrac{\pi }{3} \right) $ lies. We can see that it lies in the fourth quadrant. In the fourth quadrant, only the cosine values are positive. Therefore, we get that $ \sin \left( 4\pi -\dfrac{\pi }{3} \right)=-\sin \dfrac{\pi }{3}=-\dfrac{\sqrt{3}}{2} $ , which is the same value we found using the formula for $ \sin \left( A-B \right) $ .
Complete step by step answer:
We know that $ \sin \left( -x \right)=-\sin x $ . Therefore, we can write the trigonometric function with negative angle in the following manner,
$ \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{11\pi }{3} \right) $
Now, we can write $ 11\pi =12\pi -1\pi $ . Substituting this in the above expression, we get
$ \begin{align}
& \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{12\pi -\pi }{3} \right) \\
& \Rightarrow \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( \dfrac{12\pi }{3}-\dfrac{\pi }{3} \right) \\
& \therefore \sin \left( -\dfrac{11\pi }{3} \right)=-\sin \left( 4\pi -\dfrac{\pi }{3} \right)....(i) \\
\end{align} $
We know that if we have a difference of angles, then the trigonometric function can be written using the following formula,
$ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $
Substituting $ A=4\pi $ and $ B=\dfrac{\pi }{3} $ in the above formula, we get the following
$ \sin \left( 4\pi -\dfrac{\pi }{3} \right)=\sin 4\pi \cos \dfrac{\pi }{3}-\cos 4\pi \sin \dfrac{\pi }{3} $
Let us look at the sine and cosine values for angles $ 4\pi $ and $ \dfrac{\pi }{3} $ . We know that $ \sin n\pi =0 $ for any integer $ n $ . We also know that $ \cos n\pi =1 $ when $ n $ is an even integer and $ \cos n\pi =-1 $ when $ n $ is an odd integer. So, $ \sin 4\pi =0 $ and $ \cos 4\pi =1 $ . We know that $ \sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2} $ and $ \cos \dfrac{\pi }{3}=\dfrac{1}{2} $ . Substituting these values in the above equation, we get
$ \begin{align}
& \sin \left( 4\pi -\dfrac{\pi }{3} \right)=0\times \dfrac{1}{2}-1\times \dfrac{\sqrt{3}}{2} \\
& \therefore \sin \left( 4\pi -\dfrac{\pi }{3} \right)=-\dfrac{\sqrt{3}}{2} \\
\end{align} $
Substituting this value in equation $ (i) $ , we get
$ \begin{align}
& \sin \left( -\dfrac{11\pi }{3} \right)=-\left( -\dfrac{\sqrt{3}}{2} \right) \\
& \therefore \sin \left( -\dfrac{11\pi }{3} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align} $
Note:
We should be familiar with the values of trigonometric functions of standard angles for such type of questions. Instead of using the formula for $ \sin \left( A-B \right) $ , we can solve this question by using another method. We can determine the quadrant in which the angle $ \left( 4\pi -\dfrac{\pi }{3} \right) $ lies. We can see that it lies in the fourth quadrant. In the fourth quadrant, only the cosine values are positive. Therefore, we get that $ \sin \left( 4\pi -\dfrac{\pi }{3} \right)=-\sin \dfrac{\pi }{3}=-\dfrac{\sqrt{3}}{2} $ , which is the same value we found using the formula for $ \sin \left( A-B \right) $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

