
How do we find the value of $ \sin 45+\cos 60 $ ?
Answer
563.1k+ views
Hint: We start solving the problem by equating the given $ \sin 45+\cos 60 $ to a variable. We then make use of the results $ \sin 45=\dfrac{1}{\sqrt{2}} $ and $ \cos 60=\dfrac{1}{2} $ , to proceed through the problem. We then convert the obtained numbers to the same denominator by performing the necessary calculations. Once we get the denominators same in both the numbers, then we make use of result $ \dfrac{a}{c}+\dfrac{b}{c}=\dfrac{a+b}{c} $ to get the required value of $ \sin 45+\cos 60 $ .
Complete step by step answer:
According to the problem, we are asked to find the value of $ \sin 45+\cos 60 $.
Let us assume $ d=\sin 45+\cos 60 $ ---(1).
We know that $ \sin 45=\dfrac{1}{\sqrt{2}} $ and $ \cos 60=\dfrac{1}{2} $ . Let us use this results in equation (1).
$ \Rightarrow d=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2} $ ---(2).
Let us convert the denominators of both the terms present in equation (2) equal to make the simplification of sum easier.
$ \Rightarrow d=\left( \dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}} \right)+\dfrac{1}{2} $ .
$ \Rightarrow d=\dfrac{\sqrt{2}}{2}+\dfrac{1}{2} $ ---(3).
We know that the sum of two numbers of form $ \dfrac{a}{c} $ and $ \dfrac{b}{c} $ is defined as $ \dfrac{a}{c}+\dfrac{b}{c}=\dfrac{a+b}{c} $ . Let us use this result in equation (3).
$ \Rightarrow d=\dfrac{\sqrt{2}+1}{2} $ .
So, we have found the value of $ \sin 45+\cos 60 $ as $ \dfrac{\sqrt{2}+1}{2} $ .
$ \therefore $ The value of $ \sin 45+\cos 60 $ is $ \dfrac{\sqrt{2}+1}{2} $ .
Note:
We can solve this problem as shown below:
We have $ d=\sin 45+\cos 60 $ .
$ \Rightarrow d=\sin 45+\cos \left( 90-30 \right) $ ---(4).
We know that $ \cos \left( 90-\theta \right)=\sin \theta $ . Let us use this result in equation (4).
$ \Rightarrow d=\sin 45+\sin 30 $ ---(5).
We know that $ \sin 45=\dfrac{1}{\sqrt{2}} $ and $ \sin 30=\dfrac{1}{2} $ . Let us use this result in equation (5).
$ \Rightarrow d=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2} $ .
Now, let us make the denominators equal for both the terms present in d to make the simplification easier.
$ \Rightarrow d=\left( \dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}} \right)+\dfrac{1}{2} $ .
$ \Rightarrow d=\dfrac{\sqrt{2}}{2}+\dfrac{1}{2} $ ---(6).
We know that the sum of two numbers of form $ \dfrac{a}{c} $ and $ \dfrac{b}{c} $ is defined as $ \dfrac{a}{c}+\dfrac{b}{c}=\dfrac{a+b}{c} $ . Let us use this result in equation (6).
$ \Rightarrow d=\dfrac{\sqrt{2}+1}{2} $ .
Complete step by step answer:
According to the problem, we are asked to find the value of $ \sin 45+\cos 60 $.
Let us assume $ d=\sin 45+\cos 60 $ ---(1).
We know that $ \sin 45=\dfrac{1}{\sqrt{2}} $ and $ \cos 60=\dfrac{1}{2} $ . Let us use this results in equation (1).
$ \Rightarrow d=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2} $ ---(2).
Let us convert the denominators of both the terms present in equation (2) equal to make the simplification of sum easier.
$ \Rightarrow d=\left( \dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}} \right)+\dfrac{1}{2} $ .
$ \Rightarrow d=\dfrac{\sqrt{2}}{2}+\dfrac{1}{2} $ ---(3).
We know that the sum of two numbers of form $ \dfrac{a}{c} $ and $ \dfrac{b}{c} $ is defined as $ \dfrac{a}{c}+\dfrac{b}{c}=\dfrac{a+b}{c} $ . Let us use this result in equation (3).
$ \Rightarrow d=\dfrac{\sqrt{2}+1}{2} $ .
So, we have found the value of $ \sin 45+\cos 60 $ as $ \dfrac{\sqrt{2}+1}{2} $ .
$ \therefore $ The value of $ \sin 45+\cos 60 $ is $ \dfrac{\sqrt{2}+1}{2} $ .
Note:
We can solve this problem as shown below:
We have $ d=\sin 45+\cos 60 $ .
$ \Rightarrow d=\sin 45+\cos \left( 90-30 \right) $ ---(4).
We know that $ \cos \left( 90-\theta \right)=\sin \theta $ . Let us use this result in equation (4).
$ \Rightarrow d=\sin 45+\sin 30 $ ---(5).
We know that $ \sin 45=\dfrac{1}{\sqrt{2}} $ and $ \sin 30=\dfrac{1}{2} $ . Let us use this result in equation (5).
$ \Rightarrow d=\dfrac{1}{\sqrt{2}}+\dfrac{1}{2} $ .
Now, let us make the denominators equal for both the terms present in d to make the simplification easier.
$ \Rightarrow d=\left( \dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}} \right)+\dfrac{1}{2} $ .
$ \Rightarrow d=\dfrac{\sqrt{2}}{2}+\dfrac{1}{2} $ ---(6).
We know that the sum of two numbers of form $ \dfrac{a}{c} $ and $ \dfrac{b}{c} $ is defined as $ \dfrac{a}{c}+\dfrac{b}{c}=\dfrac{a+b}{c} $ . Let us use this result in equation (6).
$ \Rightarrow d=\dfrac{\sqrt{2}+1}{2} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

