
Find the value of ${\sin ^3}\left( {1099\pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {50\pi - \dfrac{\pi }{3}} \right)$
A) $\dfrac{1}{4}$
B) 0
C)$\sqrt 3 $
D) None of these
Answer
587.4k+ views
Hint: Remember the given formula for solving these types of questions,
$
\sin \left( {2k\pi + \theta } \right) = \sin \theta \\
\cos \left( {2k\pi - \theta } \right) = \cos \theta {\text{ }};{\text{ }}where{\text{ }}k \in \mathbb{Z} \\
$
We use these formulae to find the value of $\sin \left( {1099\pi - \dfrac{\pi }{6}} \right)$ and $\cos \left( {50\pi - \dfrac{\pi }{3}} \right)$ respectively, and them cube them and add them to reach the required answer.
Complete step-by-step answer:
Given, ${\sin ^3}\left( {1099\pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {50\pi - \dfrac{\pi }{3}} \right)$
Note that,
$
\sin \left( {2k\pi + \theta } \right) = \sin \theta \\
\cos \left( {2k\pi - \theta } \right) = \cos \theta {\text{ }};{\text{ }}where{\text{ }}k \in \mathbb{Z} \\
$
Now,
${\sin ^3}\left( {1099\pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {50\pi - \dfrac{\pi }{3}} \right)$ , can be written as,
Now substituting $1099\pi = 2\left( {549} \right)\pi + \pi $
\[ = {\sin ^3}\left( {2\left( {549} \right)\pi + \pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {2 \times 25 \times \pi - \dfrac{\pi }{3}} \right)\]
As, we have $\sin \left( {2k\pi + \theta } \right) = \sin \theta $ and $\cos \left( {2k\pi - \theta } \right) = \cos \theta {\text{ }}$ , where $k \in \mathbb{Z}$ , so we get,
$ = {\sin ^3}\left( {\pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {\dfrac{\pi }{3}} \right)$
$ = {\sin ^3}\left( {\dfrac{{5\pi }}{6}} \right) + {\cos ^3}\left( {\dfrac{\pi }{3}} \right)$
Taking the cube outside we get,
$ = {\left[ {\sin \left( {\dfrac{{5\pi }}{6}} \right)} \right]^3} + {\left[ {\cos \left( {\dfrac{\pi }{3}} \right)} \right]^3}$
Now as $\sin \left( {\dfrac{{5\pi }}{6}} \right) = \dfrac{1}{2}$ and $\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}$ , we get,
$ = {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{2}} \right)^3}$
On Cubing the terms we get,
$ = \dfrac{1}{8} + \dfrac{1}{8}$
On simplification we get,
$ = \dfrac{1}{4}$
Therefore, the value of the value of ${\sin ^3}\left( {1099\pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {50\pi - \dfrac{\pi }{3}} \right)$ is $\dfrac{1}{4}$
∴ Option (A) is correct.
Note: You should remember the basic trigonometric formulas like
$
\sin \left( {2k\pi + \theta } \right) = \sin \theta \\
\cos \left( {2k\pi - \theta } \right) = \cos \theta {\text{ }};{\text{ }}where{\text{ }}k \in \mathbb{Z} \\
$
Also note that always ${\cos ^n}\theta = {\left( {\cos \theta } \right)^n}$is true for any trigonometric ratio and for any value of n.
$
\sin \left( {2k\pi + \theta } \right) = \sin \theta \\
\cos \left( {2k\pi - \theta } \right) = \cos \theta {\text{ }};{\text{ }}where{\text{ }}k \in \mathbb{Z} \\
$
We use these formulae to find the value of $\sin \left( {1099\pi - \dfrac{\pi }{6}} \right)$ and $\cos \left( {50\pi - \dfrac{\pi }{3}} \right)$ respectively, and them cube them and add them to reach the required answer.
Complete step-by-step answer:
Given, ${\sin ^3}\left( {1099\pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {50\pi - \dfrac{\pi }{3}} \right)$
Note that,
$
\sin \left( {2k\pi + \theta } \right) = \sin \theta \\
\cos \left( {2k\pi - \theta } \right) = \cos \theta {\text{ }};{\text{ }}where{\text{ }}k \in \mathbb{Z} \\
$
Now,
${\sin ^3}\left( {1099\pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {50\pi - \dfrac{\pi }{3}} \right)$ , can be written as,
Now substituting $1099\pi = 2\left( {549} \right)\pi + \pi $
\[ = {\sin ^3}\left( {2\left( {549} \right)\pi + \pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {2 \times 25 \times \pi - \dfrac{\pi }{3}} \right)\]
As, we have $\sin \left( {2k\pi + \theta } \right) = \sin \theta $ and $\cos \left( {2k\pi - \theta } \right) = \cos \theta {\text{ }}$ , where $k \in \mathbb{Z}$ , so we get,
$ = {\sin ^3}\left( {\pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {\dfrac{\pi }{3}} \right)$
$ = {\sin ^3}\left( {\dfrac{{5\pi }}{6}} \right) + {\cos ^3}\left( {\dfrac{\pi }{3}} \right)$
Taking the cube outside we get,
$ = {\left[ {\sin \left( {\dfrac{{5\pi }}{6}} \right)} \right]^3} + {\left[ {\cos \left( {\dfrac{\pi }{3}} \right)} \right]^3}$
Now as $\sin \left( {\dfrac{{5\pi }}{6}} \right) = \dfrac{1}{2}$ and $\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}$ , we get,
$ = {\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{2}} \right)^3}$
On Cubing the terms we get,
$ = \dfrac{1}{8} + \dfrac{1}{8}$
On simplification we get,
$ = \dfrac{1}{4}$
Therefore, the value of the value of ${\sin ^3}\left( {1099\pi - \dfrac{\pi }{6}} \right) + {\cos ^3}\left( {50\pi - \dfrac{\pi }{3}} \right)$ is $\dfrac{1}{4}$
∴ Option (A) is correct.
Note: You should remember the basic trigonometric formulas like
$
\sin \left( {2k\pi + \theta } \right) = \sin \theta \\
\cos \left( {2k\pi - \theta } \right) = \cos \theta {\text{ }};{\text{ }}where{\text{ }}k \in \mathbb{Z} \\
$
Also note that always ${\cos ^n}\theta = {\left( {\cos \theta } \right)^n}$is true for any trigonometric ratio and for any value of n.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

