
Find the value of \[\sin {15^ \circ } + \cos {105^ \circ } = \].
Answer
576.3k+ views
Hint: Here we will first find the value of \[\sin {15^ \circ }\] using the formula:
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
Then we will find the value of \[\cos {105^ \circ }\] using the formula:
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\] and then add the values so obtained to get the desired answer.
Complete step-by-step answer:
The given expression is:
\[\sin {15^ \circ } + \cos {105^ \circ }\]
We will first find the value of \[\sin {15^ \circ }\]
Now we know that \[{15^ \circ } = {60^ \circ } - {45^ \circ }\]
Hence replacing this value we get:-
\[\sin {15^ \circ } = \sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right)\]
Now applying the following formula:
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
We get:-
\[\sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right) = \sin {60^ \circ }\cos {45^ \circ } - \cos {60^ \circ }\sin {45^ \circ }\]
Now we know that:
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore, putting the respective values we get:-
\[\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}\]
Simplifying it further we get:-
\[\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]……………………….(1)
Now we will calculate the value of \[\cos {105^ \circ }\]
We know that:-
\[{105^ \circ } = {60^ \circ } + {45^ \circ }\]
Hence replacing this value we get:-
\[\cos {105^ \circ } = \cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right)\]
Now applying the following formula:
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\]
We get:-
\[\cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right) = \cos {60^ \circ }\cos {45^ \circ } - \sin {60^ \circ }\sin {45^ \circ }\]
Now we know that:
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore, putting the respective values we get:-
\[\cos {105^ \circ } = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}\]
Simplifying it further we get:-
\[\cos {105^ \circ } = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}\]……………………….(2)
Adding (1) and (2) we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}\]
Taking LCM and solving it further we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }}\]
\[ \Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0\]
Hence the answer is 0.
Note: Students can also use the fact that \[\cos \left( {{{90}^ \circ } + \theta } \right) = - \sin \theta \] and then simplify the expression so obtained.
\[\cos {105^ \circ } = \cos \left( {{{90}^ \circ } + {{15}^ \circ }} \right)\]
Applying the above identity we get:-
\[\cos {105^ \circ } = - \sin {15^ \circ }\]
Now we have to find the value of \[\sin {15^ \circ } + \cos {105^ \circ }\]
Hence substituting the value we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \sin {15^ \circ } - \sin {15^ \circ }\]
\[ \Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
Then we will find the value of \[\cos {105^ \circ }\] using the formula:
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\] and then add the values so obtained to get the desired answer.
Complete step-by-step answer:
The given expression is:
\[\sin {15^ \circ } + \cos {105^ \circ }\]
We will first find the value of \[\sin {15^ \circ }\]
Now we know that \[{15^ \circ } = {60^ \circ } - {45^ \circ }\]
Hence replacing this value we get:-
\[\sin {15^ \circ } = \sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right)\]
Now applying the following formula:
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
We get:-
\[\sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right) = \sin {60^ \circ }\cos {45^ \circ } - \cos {60^ \circ }\sin {45^ \circ }\]
Now we know that:
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore, putting the respective values we get:-
\[\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}\]
Simplifying it further we get:-
\[\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]……………………….(1)
Now we will calculate the value of \[\cos {105^ \circ }\]
We know that:-
\[{105^ \circ } = {60^ \circ } + {45^ \circ }\]
Hence replacing this value we get:-
\[\cos {105^ \circ } = \cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right)\]
Now applying the following formula:
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\]
We get:-
\[\cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right) = \cos {60^ \circ }\cos {45^ \circ } - \sin {60^ \circ }\sin {45^ \circ }\]
Now we know that:
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore, putting the respective values we get:-
\[\cos {105^ \circ } = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}\]
Simplifying it further we get:-
\[\cos {105^ \circ } = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}\]……………………….(2)
Adding (1) and (2) we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}\]
Taking LCM and solving it further we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }}\]
\[ \Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0\]
Hence the answer is 0.
Note: Students can also use the fact that \[\cos \left( {{{90}^ \circ } + \theta } \right) = - \sin \theta \] and then simplify the expression so obtained.
\[\cos {105^ \circ } = \cos \left( {{{90}^ \circ } + {{15}^ \circ }} \right)\]
Applying the above identity we get:-
\[\cos {105^ \circ } = - \sin {15^ \circ }\]
Now we have to find the value of \[\sin {15^ \circ } + \cos {105^ \circ }\]
Hence substituting the value we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \sin {15^ \circ } - \sin {15^ \circ }\]
\[ \Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

