
Find the value of \[\sin {15^ \circ } + \cos {105^ \circ } = \].
Answer
590.4k+ views
Hint: Here we will first find the value of \[\sin {15^ \circ }\] using the formula:
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
Then we will find the value of \[\cos {105^ \circ }\] using the formula:
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\] and then add the values so obtained to get the desired answer.
Complete step-by-step answer:
The given expression is:
\[\sin {15^ \circ } + \cos {105^ \circ }\]
We will first find the value of \[\sin {15^ \circ }\]
Now we know that \[{15^ \circ } = {60^ \circ } - {45^ \circ }\]
Hence replacing this value we get:-
\[\sin {15^ \circ } = \sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right)\]
Now applying the following formula:
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
We get:-
\[\sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right) = \sin {60^ \circ }\cos {45^ \circ } - \cos {60^ \circ }\sin {45^ \circ }\]
Now we know that:
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore, putting the respective values we get:-
\[\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}\]
Simplifying it further we get:-
\[\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]……………………….(1)
Now we will calculate the value of \[\cos {105^ \circ }\]
We know that:-
\[{105^ \circ } = {60^ \circ } + {45^ \circ }\]
Hence replacing this value we get:-
\[\cos {105^ \circ } = \cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right)\]
Now applying the following formula:
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\]
We get:-
\[\cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right) = \cos {60^ \circ }\cos {45^ \circ } - \sin {60^ \circ }\sin {45^ \circ }\]
Now we know that:
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore, putting the respective values we get:-
\[\cos {105^ \circ } = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}\]
Simplifying it further we get:-
\[\cos {105^ \circ } = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}\]……………………….(2)
Adding (1) and (2) we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}\]
Taking LCM and solving it further we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }}\]
\[ \Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0\]
Hence the answer is 0.
Note: Students can also use the fact that \[\cos \left( {{{90}^ \circ } + \theta } \right) = - \sin \theta \] and then simplify the expression so obtained.
\[\cos {105^ \circ } = \cos \left( {{{90}^ \circ } + {{15}^ \circ }} \right)\]
Applying the above identity we get:-
\[\cos {105^ \circ } = - \sin {15^ \circ }\]
Now we have to find the value of \[\sin {15^ \circ } + \cos {105^ \circ }\]
Hence substituting the value we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \sin {15^ \circ } - \sin {15^ \circ }\]
\[ \Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
Then we will find the value of \[\cos {105^ \circ }\] using the formula:
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\] and then add the values so obtained to get the desired answer.
Complete step-by-step answer:
The given expression is:
\[\sin {15^ \circ } + \cos {105^ \circ }\]
We will first find the value of \[\sin {15^ \circ }\]
Now we know that \[{15^ \circ } = {60^ \circ } - {45^ \circ }\]
Hence replacing this value we get:-
\[\sin {15^ \circ } = \sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right)\]
Now applying the following formula:
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
We get:-
\[\sin \left( {{{60}^ \circ } - {{45}^ \circ }} \right) = \sin {60^ \circ }\cos {45^ \circ } - \cos {60^ \circ }\sin {45^ \circ }\]
Now we know that:
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore, putting the respective values we get:-
\[\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}\]
Simplifying it further we get:-
\[\sin \left( {{{15}^ \circ }} \right) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]……………………….(1)
Now we will calculate the value of \[\cos {105^ \circ }\]
We know that:-
\[{105^ \circ } = {60^ \circ } + {45^ \circ }\]
Hence replacing this value we get:-
\[\cos {105^ \circ } = \cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right)\]
Now applying the following formula:
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\]
We get:-
\[\cos \left( {{{60}^ \circ } + {{45}^ \circ }} \right) = \cos {60^ \circ }\cos {45^ \circ } - \sin {60^ \circ }\sin {45^ \circ }\]
Now we know that:
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\cos {45^ \circ } = \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^ \circ } = \dfrac{1}{2}\]
Therefore, putting the respective values we get:-
\[\cos {105^ \circ } = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}\]
Simplifying it further we get:-
\[\cos {105^ \circ } = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}\]……………………….(2)
Adding (1) and (2) we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}\]
Taking LCM and solving it further we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \dfrac{{\sqrt 3 - 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }}\]
\[ \Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0\]
Hence the answer is 0.
Note: Students can also use the fact that \[\cos \left( {{{90}^ \circ } + \theta } \right) = - \sin \theta \] and then simplify the expression so obtained.
\[\cos {105^ \circ } = \cos \left( {{{90}^ \circ } + {{15}^ \circ }} \right)\]
Applying the above identity we get:-
\[\cos {105^ \circ } = - \sin {15^ \circ }\]
Now we have to find the value of \[\sin {15^ \circ } + \cos {105^ \circ }\]
Hence substituting the value we get:-
\[\sin {15^ \circ } + \cos {105^ \circ } = \sin {15^ \circ } - \sin {15^ \circ }\]
\[ \Rightarrow \sin {15^ \circ } + \cos {105^ \circ } = 0\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

