
Find the value of \[\sin 12^\circ \sin 48^\circ \sin 54^\circ = \]
A.\[\dfrac{1}{{16}}\]
B.\[\dfrac{1}{{32}}\]
C.\[\dfrac{1}{8}\]
D.\[\dfrac{1}{4}\]
Answer
549.3k+ views
Hint: Here, we will multiply and divide the given expression by 2 so as to make it in the form of a trigonometric identity. Then using the trigonometric formulas, we will simplify the expression. Again, we will rewrite the equation in the form of a trigonometric identity by multiplying and dividing it by 2. Then using the trigonometric formulas, we will simplify the expression to get the required value.
Formula Used: We will use the following formulas:
1.\[2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)\]
2.\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
Complete step-by-step answer:
We have to find the value of: \[\sin 12^\circ \sin 48^\circ \sin 54^\circ \]
Now, this can also be written as:
\[\left( {\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ \]
Now, multiplying and dividing by 2,
\[ \Rightarrow \left( {\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ = \dfrac{1}{2}\left( {2\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ \]
Now, using the formula: \[2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)\], we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\cos \left( {48^\circ - 12^\circ } \right) - \cos \left( {48^\circ + 12^\circ } \right)} \right]\sin 54^\circ \]
Subtracting the angles in the bracket, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\cos 36^\circ - \cos 60^\circ } \right]\sin 54^\circ \]
According to the trigonometric tables, we know that: \[\cos 60^\circ = \dfrac{1}{2}\].
Substituting \[\cos 60^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\cos 36^\circ - \dfrac{1}{2}} \right]\sin 54^\circ \]
Multiplying the terms, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\sin 54^\circ \cos 36^\circ - \dfrac{1}{2}\sin 54^\circ } \right]\]
Again, multiplying and dividing the RHS by 2, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {2\sin 54^\circ \cos 36^\circ - \sin 54^\circ } \right]\]
Now, using the formula, \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\], we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {\sin \left( {54^\circ + 36^\circ } \right) + \sin \left( {54^\circ - 36^\circ } \right) - \sin 54^\circ } \right]\]
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {\sin 90^\circ + \sin 18^\circ - \sin 54^\circ } \right]\]
We know that the trigonometric tables, \[\sin 90^\circ = 1\], \[\sin 18^\circ = \dfrac{{\sqrt 5 - 1}}{4}\] and \[\sin 54^\circ = \dfrac{{\sqrt 5 + 1}}{4}\].
Hence, substituting these values in the above equation, we get,
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {1 + \dfrac{{\sqrt 5 - 1}}{4} - \dfrac{{\sqrt 5 + 1}}{4}} \right]\]
Subtracting the terms, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {1 + \dfrac{{\sqrt 5 - 1 - \sqrt 5 - 1}}{4}} \right]\]
Solving further, we get,
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {1 - \dfrac{1}{2}} \right] = \dfrac{1}{4}\left[ {\dfrac{1}{2}} \right]\]
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{8}\]
Therefore, the required value of \[\sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{8}\]
Hence, option C is the correct answer.
Note: While solving this question, we have taken the first two angles in brackets because they make a sum equal to \[60^\circ \] which is an angle whose value is given in the trigonometric table. Hence, when we will use the required trigonometric formula in the bracket formed, and then we will find one angle by its value. Also, it is really important to take sine with a larger angle as first term and the sine with smaller angle as second term while solving the product. This is to avoid the use of quadrants in this question to remove the negative sign further.
Formula Used: We will use the following formulas:
1.\[2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)\]
2.\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
Complete step-by-step answer:
We have to find the value of: \[\sin 12^\circ \sin 48^\circ \sin 54^\circ \]
Now, this can also be written as:
\[\left( {\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ \]
Now, multiplying and dividing by 2,
\[ \Rightarrow \left( {\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ = \dfrac{1}{2}\left( {2\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ \]
Now, using the formula: \[2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)\], we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\cos \left( {48^\circ - 12^\circ } \right) - \cos \left( {48^\circ + 12^\circ } \right)} \right]\sin 54^\circ \]
Subtracting the angles in the bracket, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\cos 36^\circ - \cos 60^\circ } \right]\sin 54^\circ \]
According to the trigonometric tables, we know that: \[\cos 60^\circ = \dfrac{1}{2}\].
Substituting \[\cos 60^\circ = \dfrac{1}{2}\] in the above equation, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\cos 36^\circ - \dfrac{1}{2}} \right]\sin 54^\circ \]
Multiplying the terms, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{2}\left[ {\sin 54^\circ \cos 36^\circ - \dfrac{1}{2}\sin 54^\circ } \right]\]
Again, multiplying and dividing the RHS by 2, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {2\sin 54^\circ \cos 36^\circ - \sin 54^\circ } \right]\]
Now, using the formula, \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\], we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {\sin \left( {54^\circ + 36^\circ } \right) + \sin \left( {54^\circ - 36^\circ } \right) - \sin 54^\circ } \right]\]
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {\sin 90^\circ + \sin 18^\circ - \sin 54^\circ } \right]\]
We know that the trigonometric tables, \[\sin 90^\circ = 1\], \[\sin 18^\circ = \dfrac{{\sqrt 5 - 1}}{4}\] and \[\sin 54^\circ = \dfrac{{\sqrt 5 + 1}}{4}\].
Hence, substituting these values in the above equation, we get,
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {1 + \dfrac{{\sqrt 5 - 1}}{4} - \dfrac{{\sqrt 5 + 1}}{4}} \right]\]
Subtracting the terms, we get
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {1 + \dfrac{{\sqrt 5 - 1 - \sqrt 5 - 1}}{4}} \right]\]
Solving further, we get,
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{4}\left[ {1 - \dfrac{1}{2}} \right] = \dfrac{1}{4}\left[ {\dfrac{1}{2}} \right]\]
\[ \Rightarrow \sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{8}\]
Therefore, the required value of \[\sin 12^\circ \sin 48^\circ \sin 54^\circ = \dfrac{1}{8}\]
Hence, option C is the correct answer.
Note: While solving this question, we have taken the first two angles in brackets because they make a sum equal to \[60^\circ \] which is an angle whose value is given in the trigonometric table. Hence, when we will use the required trigonometric formula in the bracket formed, and then we will find one angle by its value. Also, it is really important to take sine with a larger angle as first term and the sine with smaller angle as second term while solving the product. This is to avoid the use of quadrants in this question to remove the negative sign further.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

