
Find the value of $ \sin {10^ \circ } + \sin {130^ \circ } - \sin {110^ \circ } $ ?
Answer
515.1k+ views
Hint: In order to solve the above equation, there is only use of trigonometric identities. Trigonometric identities are some fixed formulas obtained to solve the trigonometric equations. Take two operands at a time, apply the formula described below and then solve it to get another operand, then continue the process with the left operand.
Formula used:
$ \sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
$ \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) $
$ \cos \left( { - x} \right) = \cos x $
$ \cos \left( {{{90}^ \circ }} \right) = 0 $
$ \cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} $
Complete step by step solution:
We are given the equation $ \sin {10^ \circ } + \sin {130^ \circ } - \sin {110^ \circ } $ .
Taking two operands at a time suppose $ \sin {10^ \circ } $ and $ \sin {130^ \circ } $ , pairing them in a parenthesis, and we get:
\[\left( {\sin {{10}^ \circ } + \sin {{130}^ \circ }} \right) - \sin {110^ \circ }\] …………….(1)
From the trigonometric identities, we know that
$ \sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $ .
Comparing the value inside the brackets
$ \sin {10^ \circ } + \sin {130^ \circ } $ with $ \sin A + \sin B $ , we get the value of:
$ A = {10^ \circ } $
$ B = {130^ \circ } $
Substituting these values in the formula $ \sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $ :
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {\dfrac{{{{10}^ \circ } + {{130}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{10}^ \circ } - {{130}^ \circ }}}{2}} \right) $
Solving the values inside the parenthesis, we get:
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {\dfrac{{{{140}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{ - {{120}^ \circ }}}{2}} \right) $
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {{{70}^ \circ }} \right)\cos \left( { - {{60}^ \circ }} \right) $ ……….(2)
Since, we know that cosine is an even function that gives $ \cos \left( { - x} \right) = \cos x $ .So from this we get $ \cos \left( { - {{60}^ \circ }} \right) = \cos \left( {{{60}^ \circ }} \right) $ .
Substituting this value in equation (2), we get:
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {{{70}^ \circ }} \right)\cos \left( {{{60}^ \circ }} \right) $
Since, we know that $ \cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} $ , so substituting this in the above value, we get:
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {{{70}^ \circ }} \right) \times \dfrac{1}{2} $
Cancelling out the $ 2's $ we get:
$ \sin {10^ \circ } + \sin {130^ \circ } = \sin \left( {{{70}^ \circ }} \right) $
Now, substituting this value in the main equation that is equation (1):
\[\left( {\sin {{10}^ \circ } + \sin {{130}^ \circ }} \right) - \sin {110^ \circ }\]
\[ \Rightarrow \sin {70^ \circ } - \sin {110^ \circ }\] …………..(3)
From the trigonometric formulas, we know that
$ \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) $ .
Comparing the equation (3) , $ \sin {70^ \circ } - \sin {110^ \circ } $ with $ \sin A - \sin B $ , we get the value of:
$ A = {70^ \circ } $
$ B = {110^ \circ } $
Substituting these values in the formula
$ \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) $ :
$ \sin {70^ \circ } + \sin {110^ \circ } = 2\cos \left( {\dfrac{{{{70}^ \circ } + {{110}^ \circ }}}{2}} \right)\sin \left( {\dfrac{{{{70}^ \circ } - {{110}^ \circ }}}{2}} \right) $
Solving the values inside the parenthesis, we get:
$ \sin {70^ \circ } + \sin {110^ \circ } = 2\cos \left( {\dfrac{{{{180}^ \circ }}}{2}} \right)\sin \left( {\dfrac{{ - {{40}^ \circ }}}{2}} \right) $
$ \sin {70^ \circ } + \sin {110^ \circ } = 2\cos \left( {{{90}^ \circ }} \right)\sin \left( { - {{20}^ \circ }} \right) $
Since, we know that $ \cos \left( {{{90}^ \circ }} \right) = 0 $ , so substituting this in the above value, we get:
$ \sin {70^ \circ } + \sin {110^ \circ } = 2 \times 0 \times \sin \left( { - {{20}^ \circ }} \right) $
Solving the equation:
$ \sin {70^ \circ } + \sin {110^ \circ } = 0 $
Therefore, the value of $ \sin {10^ \circ } + \sin {130^ \circ } - \sin {110^ \circ } $ is $ 0 $ .
So, the correct answer is “0”.
Note: It’s not compulsory to take the first two operands only, we could have taken $ \sin {10^ \circ },\sin {110^ \circ } $ in the first step, then further with the third as $ \left( {\sin {{10}^ \circ } - \sin {{110}^ \circ }} \right) + \sin {130^ \circ } $ , it would have resulted in the same answer.
It’s important to remember the correct trigonometric identities and should be placed in their appropriate value in order to avoid mistakes
Formula used:
$ \sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $
$ \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) $
$ \cos \left( { - x} \right) = \cos x $
$ \cos \left( {{{90}^ \circ }} \right) = 0 $
$ \cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} $
Complete step by step solution:
We are given the equation $ \sin {10^ \circ } + \sin {130^ \circ } - \sin {110^ \circ } $ .
Taking two operands at a time suppose $ \sin {10^ \circ } $ and $ \sin {130^ \circ } $ , pairing them in a parenthesis, and we get:
\[\left( {\sin {{10}^ \circ } + \sin {{130}^ \circ }} \right) - \sin {110^ \circ }\] …………….(1)
From the trigonometric identities, we know that
$ \sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $ .
Comparing the value inside the brackets
$ \sin {10^ \circ } + \sin {130^ \circ } $ with $ \sin A + \sin B $ , we get the value of:
$ A = {10^ \circ } $
$ B = {130^ \circ } $
Substituting these values in the formula $ \sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) $ :
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {\dfrac{{{{10}^ \circ } + {{130}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{{{10}^ \circ } - {{130}^ \circ }}}{2}} \right) $
Solving the values inside the parenthesis, we get:
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {\dfrac{{{{140}^ \circ }}}{2}} \right)\cos \left( {\dfrac{{ - {{120}^ \circ }}}{2}} \right) $
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {{{70}^ \circ }} \right)\cos \left( { - {{60}^ \circ }} \right) $ ……….(2)
Since, we know that cosine is an even function that gives $ \cos \left( { - x} \right) = \cos x $ .So from this we get $ \cos \left( { - {{60}^ \circ }} \right) = \cos \left( {{{60}^ \circ }} \right) $ .
Substituting this value in equation (2), we get:
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {{{70}^ \circ }} \right)\cos \left( {{{60}^ \circ }} \right) $
Since, we know that $ \cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} $ , so substituting this in the above value, we get:
$ \sin {10^ \circ } + \sin {130^ \circ } = 2\sin \left( {{{70}^ \circ }} \right) \times \dfrac{1}{2} $
Cancelling out the $ 2's $ we get:
$ \sin {10^ \circ } + \sin {130^ \circ } = \sin \left( {{{70}^ \circ }} \right) $
Now, substituting this value in the main equation that is equation (1):
\[\left( {\sin {{10}^ \circ } + \sin {{130}^ \circ }} \right) - \sin {110^ \circ }\]
\[ \Rightarrow \sin {70^ \circ } - \sin {110^ \circ }\] …………..(3)
From the trigonometric formulas, we know that
$ \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) $ .
Comparing the equation (3) , $ \sin {70^ \circ } - \sin {110^ \circ } $ with $ \sin A - \sin B $ , we get the value of:
$ A = {70^ \circ } $
$ B = {110^ \circ } $
Substituting these values in the formula
$ \sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) $ :
$ \sin {70^ \circ } + \sin {110^ \circ } = 2\cos \left( {\dfrac{{{{70}^ \circ } + {{110}^ \circ }}}{2}} \right)\sin \left( {\dfrac{{{{70}^ \circ } - {{110}^ \circ }}}{2}} \right) $
Solving the values inside the parenthesis, we get:
$ \sin {70^ \circ } + \sin {110^ \circ } = 2\cos \left( {\dfrac{{{{180}^ \circ }}}{2}} \right)\sin \left( {\dfrac{{ - {{40}^ \circ }}}{2}} \right) $
$ \sin {70^ \circ } + \sin {110^ \circ } = 2\cos \left( {{{90}^ \circ }} \right)\sin \left( { - {{20}^ \circ }} \right) $
Since, we know that $ \cos \left( {{{90}^ \circ }} \right) = 0 $ , so substituting this in the above value, we get:
$ \sin {70^ \circ } + \sin {110^ \circ } = 2 \times 0 \times \sin \left( { - {{20}^ \circ }} \right) $
Solving the equation:
$ \sin {70^ \circ } + \sin {110^ \circ } = 0 $
Therefore, the value of $ \sin {10^ \circ } + \sin {130^ \circ } - \sin {110^ \circ } $ is $ 0 $ .
So, the correct answer is “0”.
Note: It’s not compulsory to take the first two operands only, we could have taken $ \sin {10^ \circ },\sin {110^ \circ } $ in the first step, then further with the third as $ \left( {\sin {{10}^ \circ } - \sin {{110}^ \circ }} \right) + \sin {130^ \circ } $ , it would have resulted in the same answer.
It’s important to remember the correct trigonometric identities and should be placed in their appropriate value in order to avoid mistakes
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

