
How do you find the value of \[\sec \left[ {{{\cot }^{ - 1}}\left( { - 6} \right)} \right]\]?
Answer
546.9k+ views
Hint: In this question we have to find the value of the given function which is a trigonometric function, we will make use of inverse trigonometric formulas, first convert cot function in terms of tan using identity \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right)\], and then convert tan function in terms of cos by using identity \[{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)\], then using trigonometric identity \[{\cos ^{ - 1}}x = {\sec ^{ - 1}}\dfrac{1}{x}\], then simplify the expression using the formula \[{\sec ^{ - 1}}\left( {\sec x} \right) = x\], we will get the required result.
Complete answer:
Given function is \[\sec \left[ {{{\cot }^{ - 1}}\left( { - 6} \right)} \right]\],
First using the fact \[{\cot ^{ - 1}}\left( { - x} \right) = \pi - {\cot ^{ - 1}}x\], the expression becomes,
\[ \Rightarrow \sec \left[ {\pi - {{\cot }^{ - 1}}6} \right]\],
Now using the identity \[\sec \left( {\pi - x} \right) = - \sec x\], we get,
\[ \Rightarrow - \sec \left( {{{\cot }^{ - 1}}6} \right)\],
Now convert cot function in terms of tan using the identity \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right)\], we get,
Here \[x = 6\], now substituting the value in the formula we get,
\[ \Rightarrow - \sec \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{6}} \right)} \right)\],
Now convert tan function in terms of cos by using identity \[{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)\], we get,
Here \[x = \dfrac{1}{6}\], now substituting the value in the formula we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {\dfrac{1}{6}} \right)}^2}} }}} \right)} \right)\],
Now simplifying we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + \dfrac{1}{{36}}} }}} \right)} \right)\],
Now taking L.C.M in the denominator we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {\dfrac{{36 + 1}}{{36}}} }}} \right)} \right)\],
Now simplifying we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {\dfrac{{37}}{{36}}} }}} \right)} \right)\],
Now taking the denominator of the denominator to the numerator we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {36} }}{{\sqrt {37} }}} \right)} \right)\],
Now simplifying we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{6}{{\sqrt {37} }}} \right)} \right)\],
Now using the identity, \[{\cos ^{ - 1}}x = {\sec ^{ - 1}}\dfrac{1}{x}\], here \[x = \dfrac{6}{{\sqrt {37} }}\], substituting the value in the formula we get,
\[ \Rightarrow - \sec \left( {{{\sec }^{ - 1}}\left( {\dfrac{{\sqrt {37} }}{6}} \right)} \right)\],
Now we know that \[ \Rightarrow \sec \left( {{{\sec }^{ - 1}}\left( x \right)} \right) = x\], we get,
\[ \Rightarrow - \sec \left( {{{\sec }^{ - 1}}\left( {\dfrac{{\sqrt {37} }}{6}} \right)} \right) = - \dfrac{{\sqrt {37} }}{6}\],
So, the value of the given function is \[ - \dfrac{{\sqrt {37} }}{6}\].
Final Answer:
\[\therefore \]The value of the given function \[\sec \left[ {{{\cot }^{ - 1}}\left( { - 6} \right)} \right]\]will be equal to \[ - \dfrac{{\sqrt {37} }}{6}\].
Note:
The inverse trigonometric functions are used to find the unknown measure of an angle of a right triangle when two side lengths are known. Basic inverse trigonometric functions are \[{\sin ^{ - 1}}x\], \[{\cos ^{ - 1}}x\] and \[{\tan ^{ - 1}}x\].Specifically, they are the inverses of the sine, cosine, tangent. Some important formulas related to Inverse trigonometry are given below:
\[{\sin ^{ - 1}}\left( {\sin x} \right) = x\],
\[{\cos ^{ - 1}}\left( {\cos x} \right) = x\]
\[{\tan ^{ - 1}}\left( {\tan x} \right) = x\],
\[{\sec ^{ - 1}}\left( {\sec x} \right) = x\],
\[{\csc ^{ - 1}}\left( {\csc x} \right) = x\],
\[{\cot ^{ - 1}}\left( {\cot x} \right) = x\],
\[{\sin ^{ - 1}}x = {\csc ^{ - 1}}\dfrac{1}{x}\],
\[{\cos ^{ - 1}}x = {\sec ^{ - 1}}\dfrac{1}{x}\],
\[{\tan ^{ - 1}}x = {\cot ^{ - 1}}\dfrac{1}{x}\],
\[{\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 - {x^2}} }}} \right)\],
\[{\cos ^{ - 1}}x = {\sin ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 - {x^2}} }}{x}} \right)\]
\[{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }}} \right) = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)\].
Complete answer:
Given function is \[\sec \left[ {{{\cot }^{ - 1}}\left( { - 6} \right)} \right]\],
First using the fact \[{\cot ^{ - 1}}\left( { - x} \right) = \pi - {\cot ^{ - 1}}x\], the expression becomes,
\[ \Rightarrow \sec \left[ {\pi - {{\cot }^{ - 1}}6} \right]\],
Now using the identity \[\sec \left( {\pi - x} \right) = - \sec x\], we get,
\[ \Rightarrow - \sec \left( {{{\cot }^{ - 1}}6} \right)\],
Now convert cot function in terms of tan using the identity \[{\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right)\], we get,
Here \[x = 6\], now substituting the value in the formula we get,
\[ \Rightarrow - \sec \left( {{{\tan }^{ - 1}}\left( {\dfrac{1}{6}} \right)} \right)\],
Now convert tan function in terms of cos by using identity \[{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)\], we get,
Here \[x = \dfrac{1}{6}\], now substituting the value in the formula we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {\dfrac{1}{6}} \right)}^2}} }}} \right)} \right)\],
Now simplifying we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + \dfrac{1}{{36}}} }}} \right)} \right)\],
Now taking L.C.M in the denominator we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {\dfrac{{36 + 1}}{{36}}} }}} \right)} \right)\],
Now simplifying we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {\dfrac{{37}}{{36}}} }}} \right)} \right)\],
Now taking the denominator of the denominator to the numerator we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{{\sqrt {36} }}{{\sqrt {37} }}} \right)} \right)\],
Now simplifying we get,
\[ \Rightarrow - \sec \left( {{{\cos }^{ - 1}}\left( {\dfrac{6}{{\sqrt {37} }}} \right)} \right)\],
Now using the identity, \[{\cos ^{ - 1}}x = {\sec ^{ - 1}}\dfrac{1}{x}\], here \[x = \dfrac{6}{{\sqrt {37} }}\], substituting the value in the formula we get,
\[ \Rightarrow - \sec \left( {{{\sec }^{ - 1}}\left( {\dfrac{{\sqrt {37} }}{6}} \right)} \right)\],
Now we know that \[ \Rightarrow \sec \left( {{{\sec }^{ - 1}}\left( x \right)} \right) = x\], we get,
\[ \Rightarrow - \sec \left( {{{\sec }^{ - 1}}\left( {\dfrac{{\sqrt {37} }}{6}} \right)} \right) = - \dfrac{{\sqrt {37} }}{6}\],
So, the value of the given function is \[ - \dfrac{{\sqrt {37} }}{6}\].
Final Answer:
\[\therefore \]The value of the given function \[\sec \left[ {{{\cot }^{ - 1}}\left( { - 6} \right)} \right]\]will be equal to \[ - \dfrac{{\sqrt {37} }}{6}\].
Note:
The inverse trigonometric functions are used to find the unknown measure of an angle of a right triangle when two side lengths are known. Basic inverse trigonometric functions are \[{\sin ^{ - 1}}x\], \[{\cos ^{ - 1}}x\] and \[{\tan ^{ - 1}}x\].Specifically, they are the inverses of the sine, cosine, tangent. Some important formulas related to Inverse trigonometry are given below:
\[{\sin ^{ - 1}}\left( {\sin x} \right) = x\],
\[{\cos ^{ - 1}}\left( {\cos x} \right) = x\]
\[{\tan ^{ - 1}}\left( {\tan x} \right) = x\],
\[{\sec ^{ - 1}}\left( {\sec x} \right) = x\],
\[{\csc ^{ - 1}}\left( {\csc x} \right) = x\],
\[{\cot ^{ - 1}}\left( {\cot x} \right) = x\],
\[{\sin ^{ - 1}}x = {\csc ^{ - 1}}\dfrac{1}{x}\],
\[{\cos ^{ - 1}}x = {\sec ^{ - 1}}\dfrac{1}{x}\],
\[{\tan ^{ - 1}}x = {\cot ^{ - 1}}\dfrac{1}{x}\],
\[{\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 - {x^2}} }}} \right)\],
\[{\cos ^{ - 1}}x = {\sin ^{ - 1}}\sqrt {1 - {x^2}} = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 - {x^2}} }}{x}} \right)\]
\[{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }}} \right) = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

