
Find the value of ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]$ .
Answer
602.7k+ views
Hint: According to definition of inverse sec function we can write
${{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }}$ if $x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$
Complete step-by-step answer:
Given expression is ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]$
According to definition of inverse sec function ${{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }}$ if $x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$
But $-{{30}^{\circ }}$ is not in the domain of inverse sec function.
We can use $\sec \left( -\theta \right)=\sec \left( \theta \right)$.
So we can write $\sec \left( -{{30}^{\circ }} \right)=\sec \left( {{30}^{\circ }} \right)$
Hence we can write given expression as ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]={{\sec }^{-1}}[\sec ({{30}^{\circ }})]$
Now we can simplify it as
${{\sec }^{-1}}[\sec ({{30}^{\circ }})]={{30}^{\circ }}$ because ${{30}^{\circ }}$ is in domain of inverse sec function.
Note: In this type of function we need to first check that angle is in the domain of inverse function or not. If angle is not in domain we need to first convert to write it in domain of inverse trigonometric function.
${{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }}$ if $x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$
Complete step-by-step answer:
Given expression is ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]$
According to definition of inverse sec function ${{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }}$ if $x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$
But $-{{30}^{\circ }}$ is not in the domain of inverse sec function.
We can use $\sec \left( -\theta \right)=\sec \left( \theta \right)$.
So we can write $\sec \left( -{{30}^{\circ }} \right)=\sec \left( {{30}^{\circ }} \right)$
Hence we can write given expression as ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]={{\sec }^{-1}}[\sec ({{30}^{\circ }})]$
Now we can simplify it as
${{\sec }^{-1}}[\sec ({{30}^{\circ }})]={{30}^{\circ }}$ because ${{30}^{\circ }}$ is in domain of inverse sec function.
Note: In this type of function we need to first check that angle is in the domain of inverse function or not. If angle is not in domain we need to first convert to write it in domain of inverse trigonometric function.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

