
Find the value of ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]$ .
Answer
588.3k+ views
Hint: According to definition of inverse sec function we can write
${{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }}$ if $x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$
Complete step-by-step answer:
Given expression is ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]$
According to definition of inverse sec function ${{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }}$ if $x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$
But $-{{30}^{\circ }}$ is not in the domain of inverse sec function.
We can use $\sec \left( -\theta \right)=\sec \left( \theta \right)$.
So we can write $\sec \left( -{{30}^{\circ }} \right)=\sec \left( {{30}^{\circ }} \right)$
Hence we can write given expression as ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]={{\sec }^{-1}}[\sec ({{30}^{\circ }})]$
Now we can simplify it as
${{\sec }^{-1}}[\sec ({{30}^{\circ }})]={{30}^{\circ }}$ because ${{30}^{\circ }}$ is in domain of inverse sec function.
Note: In this type of function we need to first check that angle is in the domain of inverse function or not. If angle is not in domain we need to first convert to write it in domain of inverse trigonometric function.
${{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }}$ if $x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$
Complete step-by-step answer:
Given expression is ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]$
According to definition of inverse sec function ${{\sec }^{-1}}[\sec ({{x}^{\circ }})]={{x}^{\circ }}$ if $x\in \left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi \right]$
But $-{{30}^{\circ }}$ is not in the domain of inverse sec function.
We can use $\sec \left( -\theta \right)=\sec \left( \theta \right)$.
So we can write $\sec \left( -{{30}^{\circ }} \right)=\sec \left( {{30}^{\circ }} \right)$
Hence we can write given expression as ${{\sec }^{-1}}[\sec (-{{30}^{\circ }})]={{\sec }^{-1}}[\sec ({{30}^{\circ }})]$
Now we can simplify it as
${{\sec }^{-1}}[\sec ({{30}^{\circ }})]={{30}^{\circ }}$ because ${{30}^{\circ }}$ is in domain of inverse sec function.
Note: In this type of function we need to first check that angle is in the domain of inverse function or not. If angle is not in domain we need to first convert to write it in domain of inverse trigonometric function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

