
Find the value of $S = {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + 3n + 3}}} \right) + ... + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + (n + 19)(n + 20)}}} \right)$ ,then .$\tan S$. is equal to :
(a)$\dfrac{{20}}{{401 + 20n}}$ (b)$\dfrac{n}{{{n^2} + 20n + 1}}$
(c)$\dfrac{{20}}{{{n^2} + 20n + 1}}$ (d)$\dfrac{n}{{401 + 20n}}$
Answer
586.5k+ views
Hint: Here, we will be using the inverse tangent formula for this. The formula is
${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ .
Complete step-by-step answer:
$\eqalign{
& S = {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + 3n + 3}}} \right) + ... + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + (n + 19)(n + 20)}}} \right) \cr
& = {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + n(n + 1)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + (n + 1)(n + 2)}}} \right) + ... + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + (n + 19)(n + 20)}}} \right) \cr
& = {\tan ^{ - 1}}\left( {\dfrac{{(n + 1) - n}}{{1 + n(n + 1)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{(n + 2) - (n + 1)}}{{1 + (n + 1)(n + 2)}}} \right) + ... + {\tan ^{ - 1}}\left( {\dfrac{{(n + 20) - (n + 19)}}{{1 + (n + 19)(n + 20)}}} \right) \cr
& = {\tan ^{ - 1}}(n + 1) - {\tan ^{ - 1}}(n) + {\tan ^{ - 1}}(n + 2) - {\tan ^{ - 1}}(n + 1) + ... + {\tan ^{ - 1}}(n + 20) - {\tan ^{ - 1}}(n + 19) \cr
& = {\tan ^{ - 1}}(n + 20) - {\tan ^{ - 1}}(n)\,\,\,\,\,\,\,\,[as\,\,other\,\,terms\,\,are\,\,vanished] \cr
& = {\tan ^{ - 1}}\left( {\dfrac{{(n + 20) - n}}{{1 + n(n + 20)}}} \right) \cr
& = {\tan ^{ - 1}}\left( {\dfrac{{20}}{{{n^2} + 20n + 1}}} \right) \cr} $
Hence,$\tan \,S = \dfrac{{20}}{{{n^2} + 20n + 1}}.$
So, option (c) is correct here.
Note: For solving,such type of problems inverse trigonometric rule is necessary here. These inverse functions in trigonometry are used to get the angle with any of the trigonometry ratios. In expansion we will left out with only 2 values other values will be cancelled.
${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ .
Complete step-by-step answer:
$\eqalign{
& S = {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + n + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{{n^2} + 3n + 3}}} \right) + ... + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + (n + 19)(n + 20)}}} \right) \cr
& = {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + n(n + 1)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + (n + 1)(n + 2)}}} \right) + ... + {\tan ^{ - 1}}\left( {\dfrac{1}{{1 + (n + 19)(n + 20)}}} \right) \cr
& = {\tan ^{ - 1}}\left( {\dfrac{{(n + 1) - n}}{{1 + n(n + 1)}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{(n + 2) - (n + 1)}}{{1 + (n + 1)(n + 2)}}} \right) + ... + {\tan ^{ - 1}}\left( {\dfrac{{(n + 20) - (n + 19)}}{{1 + (n + 19)(n + 20)}}} \right) \cr
& = {\tan ^{ - 1}}(n + 1) - {\tan ^{ - 1}}(n) + {\tan ^{ - 1}}(n + 2) - {\tan ^{ - 1}}(n + 1) + ... + {\tan ^{ - 1}}(n + 20) - {\tan ^{ - 1}}(n + 19) \cr
& = {\tan ^{ - 1}}(n + 20) - {\tan ^{ - 1}}(n)\,\,\,\,\,\,\,\,[as\,\,other\,\,terms\,\,are\,\,vanished] \cr
& = {\tan ^{ - 1}}\left( {\dfrac{{(n + 20) - n}}{{1 + n(n + 20)}}} \right) \cr
& = {\tan ^{ - 1}}\left( {\dfrac{{20}}{{{n^2} + 20n + 1}}} \right) \cr} $
Hence,$\tan \,S = \dfrac{{20}}{{{n^2} + 20n + 1}}.$
So, option (c) is correct here.
Note: For solving,such type of problems inverse trigonometric rule is necessary here. These inverse functions in trigonometry are used to get the angle with any of the trigonometry ratios. In expansion we will left out with only 2 values other values will be cancelled.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

