
Find the value of ‘r’ for which.
\[{20_{{{\text{C}}_{\text{r}}}}}{20_{{{\text{C}}_{\text{o}}}}} + {20_{{{\text{C}}_{{\text{r}} - 1}}}}{20_{{{\text{C}}_1}}} + {20_{{{\text{C}}_{{\text{r}} - 2}}}}{20_{{{\text{C}}_2}}} + \ldots + {20_{{{\text{C}}_{\text{o}}}}}{20_{{{\text{C}}_{\text{r}}}}}\] is maximum.
A) 20
B) 10
C) 15
D) 11
Answer
508.5k+ views
Hint: Here, we will be using the Vandermonde’s formula to solve the question’s first part i.e. first we will find the value of the expression and then we will find the value of ‘r’ for which the expression attains a maximum.
Complete step by step solution: Formula used: Vandermonde’s Formula:
This is the direct formula which we can apply to solve the problem. It says:-
\[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\]
Here one most remember following points:-
a) \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] n is same in all the terms
b) base terms should add upto same number
here r + o = r | r − 1 + 1 = r | r − 2 + 2 = r | … o + r |
c) and the sum of expression is $2 \times {{\text{n}}_{{{\text{C}}_{\text{r}}}}}$ i.e
2 × power Csum of bases.
So, if we substitute the expression in the Vandermonde’s formula, we get
\[{20_{{{\text{C}}_{\text{r}}}}}{20_{{{\text{C}}_{\text{o}}}}} + {20_{{{\text{C}}_{{\text{r}} - 1}}}}{20_{{{\text{C}}_1}}} + {20_{{{\text{C}}_{{\text{r}} - 2}}}}{20_{{{\text{C}}_2}}} + \ldots + {20_{{{\text{C}}_{\text{o}}}}}{20_{{{\text{C}}_{\text{r}}}}}\]
= $2 \times {20_{{{\text{C}}_{\text{r}}}}}$
= ${40_{{{\text{C}}_{\text{r}}}}}$
Now ${40_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{40}}{2} = 20$.
(Note:- ${n_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{\text{n}}}{2}$ if n is even
and ${\text{r}} = \dfrac{{{\text{n}} + 1}}{2}$ if n is odd)
∴ Correct answer is (A) 20.
Note: One must be very careful in applying the Vandermonde’s formula as one should also check that it contains all the terms i.e from \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] … \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\].
If any one of the term is even missing, you cannot apply the formula.
Complete step by step solution: Formula used: Vandermonde’s Formula:
This is the direct formula which we can apply to solve the problem. It says:-
\[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\]
Here one most remember following points:-
a) \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] n is same in all the terms
b) base terms should add upto same number
here r + o = r | r − 1 + 1 = r | r − 2 + 2 = r | … o + r |
c) and the sum of expression is $2 \times {{\text{n}}_{{{\text{C}}_{\text{r}}}}}$ i.e
2 × power Csum of bases.
So, if we substitute the expression in the Vandermonde’s formula, we get
\[{20_{{{\text{C}}_{\text{r}}}}}{20_{{{\text{C}}_{\text{o}}}}} + {20_{{{\text{C}}_{{\text{r}} - 1}}}}{20_{{{\text{C}}_1}}} + {20_{{{\text{C}}_{{\text{r}} - 2}}}}{20_{{{\text{C}}_2}}} + \ldots + {20_{{{\text{C}}_{\text{o}}}}}{20_{{{\text{C}}_{\text{r}}}}}\]
= $2 \times {20_{{{\text{C}}_{\text{r}}}}}$
= ${40_{{{\text{C}}_{\text{r}}}}}$
Now ${40_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{40}}{2} = 20$.
(Note:- ${n_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{\text{n}}}{2}$ if n is even
and ${\text{r}} = \dfrac{{{\text{n}} + 1}}{2}$ if n is odd)
∴ Correct answer is (A) 20.
Note: One must be very careful in applying the Vandermonde’s formula as one should also check that it contains all the terms i.e from \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] … \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\].
If any one of the term is even missing, you cannot apply the formula.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
