
Find the value of ‘r’ for which.
\[{20_{{{\text{C}}_{\text{r}}}}}{20_{{{\text{C}}_{\text{o}}}}} + {20_{{{\text{C}}_{{\text{r}} - 1}}}}{20_{{{\text{C}}_1}}} + {20_{{{\text{C}}_{{\text{r}} - 2}}}}{20_{{{\text{C}}_2}}} + \ldots + {20_{{{\text{C}}_{\text{o}}}}}{20_{{{\text{C}}_{\text{r}}}}}\] is maximum.
A) 20
B) 10
C) 15
D) 11
Answer
590.1k+ views
Hint: Here, we will be using the Vandermonde’s formula to solve the question’s first part i.e. first we will find the value of the expression and then we will find the value of ‘r’ for which the expression attains a maximum.
Complete step by step solution: Formula used: Vandermonde’s Formula:
This is the direct formula which we can apply to solve the problem. It says:-
\[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\]
Here one most remember following points:-
a) \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] n is same in all the terms
b) base terms should add upto same number
here r + o = r | r − 1 + 1 = r | r − 2 + 2 = r | … o + r |
c) and the sum of expression is $2 \times {{\text{n}}_{{{\text{C}}_{\text{r}}}}}$ i.e
2 × power Csum of bases.
So, if we substitute the expression in the Vandermonde’s formula, we get
\[{20_{{{\text{C}}_{\text{r}}}}}{20_{{{\text{C}}_{\text{o}}}}} + {20_{{{\text{C}}_{{\text{r}} - 1}}}}{20_{{{\text{C}}_1}}} + {20_{{{\text{C}}_{{\text{r}} - 2}}}}{20_{{{\text{C}}_2}}} + \ldots + {20_{{{\text{C}}_{\text{o}}}}}{20_{{{\text{C}}_{\text{r}}}}}\]
= $2 \times {20_{{{\text{C}}_{\text{r}}}}}$
= ${40_{{{\text{C}}_{\text{r}}}}}$
Now ${40_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{40}}{2} = 20$.
(Note:- ${n_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{\text{n}}}{2}$ if n is even
and ${\text{r}} = \dfrac{{{\text{n}} + 1}}{2}$ if n is odd)
∴ Correct answer is (A) 20.
Note: One must be very careful in applying the Vandermonde’s formula as one should also check that it contains all the terms i.e from \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] … \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\].
If any one of the term is even missing, you cannot apply the formula.
Complete step by step solution: Formula used: Vandermonde’s Formula:
This is the direct formula which we can apply to solve the problem. It says:-
\[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\]
Here one most remember following points:-
a) \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] n is same in all the terms
b) base terms should add upto same number
here r + o = r | r − 1 + 1 = r | r − 2 + 2 = r | … o + r |
c) and the sum of expression is $2 \times {{\text{n}}_{{{\text{C}}_{\text{r}}}}}$ i.e
2 × power Csum of bases.
So, if we substitute the expression in the Vandermonde’s formula, we get
\[{20_{{{\text{C}}_{\text{r}}}}}{20_{{{\text{C}}_{\text{o}}}}} + {20_{{{\text{C}}_{{\text{r}} - 1}}}}{20_{{{\text{C}}_1}}} + {20_{{{\text{C}}_{{\text{r}} - 2}}}}{20_{{{\text{C}}_2}}} + \ldots + {20_{{{\text{C}}_{\text{o}}}}}{20_{{{\text{C}}_{\text{r}}}}}\]
= $2 \times {20_{{{\text{C}}_{\text{r}}}}}$
= ${40_{{{\text{C}}_{\text{r}}}}}$
Now ${40_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{40}}{2} = 20$.
(Note:- ${n_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{\text{n}}}{2}$ if n is even
and ${\text{r}} = \dfrac{{{\text{n}} + 1}}{2}$ if n is odd)
∴ Correct answer is (A) 20.
Note: One must be very careful in applying the Vandermonde’s formula as one should also check that it contains all the terms i.e from \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] … \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\].
If any one of the term is even missing, you cannot apply the formula.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

