
Find the value of ‘r’ for which.
\[{20_{{{\text{C}}_{\text{r}}}}}{20_{{{\text{C}}_{\text{o}}}}} + {20_{{{\text{C}}_{{\text{r}} - 1}}}}{20_{{{\text{C}}_1}}} + {20_{{{\text{C}}_{{\text{r}} - 2}}}}{20_{{{\text{C}}_2}}} + \ldots + {20_{{{\text{C}}_{\text{o}}}}}{20_{{{\text{C}}_{\text{r}}}}}\] is maximum.
A) 20
B) 10
C) 15
D) 11
Answer
576.3k+ views
Hint: Here, we will be using the Vandermonde’s formula to solve the question’s first part i.e. first we will find the value of the expression and then we will find the value of ‘r’ for which the expression attains a maximum.
Complete step by step solution: Formula used: Vandermonde’s Formula:
This is the direct formula which we can apply to solve the problem. It says:-
\[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\]
Here one most remember following points:-
a) \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] n is same in all the terms
b) base terms should add upto same number
here r + o = r | r − 1 + 1 = r | r − 2 + 2 = r | … o + r |
c) and the sum of expression is $2 \times {{\text{n}}_{{{\text{C}}_{\text{r}}}}}$ i.e
2 × power Csum of bases.
So, if we substitute the expression in the Vandermonde’s formula, we get
\[{20_{{{\text{C}}_{\text{r}}}}}{20_{{{\text{C}}_{\text{o}}}}} + {20_{{{\text{C}}_{{\text{r}} - 1}}}}{20_{{{\text{C}}_1}}} + {20_{{{\text{C}}_{{\text{r}} - 2}}}}{20_{{{\text{C}}_2}}} + \ldots + {20_{{{\text{C}}_{\text{o}}}}}{20_{{{\text{C}}_{\text{r}}}}}\]
= $2 \times {20_{{{\text{C}}_{\text{r}}}}}$
= ${40_{{{\text{C}}_{\text{r}}}}}$
Now ${40_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{40}}{2} = 20$.
(Note:- ${n_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{\text{n}}}{2}$ if n is even
and ${\text{r}} = \dfrac{{{\text{n}} + 1}}{2}$ if n is odd)
∴ Correct answer is (A) 20.
Note: One must be very careful in applying the Vandermonde’s formula as one should also check that it contains all the terms i.e from \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] … \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\].
If any one of the term is even missing, you cannot apply the formula.
Complete step by step solution: Formula used: Vandermonde’s Formula:
This is the direct formula which we can apply to solve the problem. It says:-
\[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\]
Here one most remember following points:-
a) \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}{{\text{n}}_{{{\text{C}}_{\text{o}}}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 1}}}}{{\text{n}}_{{{\text{C}}_1}}} + {{\text{n}}_{{{\text{C}}_{{\text{r}} - 2}}}}{{\text{n}}_{{{\text{C}}_2}}} + \ldots + {{\text{n}}_{{{\text{C}}_{\text{o}}}}}{{\text{n}}_{{{\text{C}}_{\text{r}}}}} = 2{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] n is same in all the terms
b) base terms should add upto same number
here r + o = r | r − 1 + 1 = r | r − 2 + 2 = r | … o + r |
c) and the sum of expression is $2 \times {{\text{n}}_{{{\text{C}}_{\text{r}}}}}$ i.e
2 × power Csum of bases.
So, if we substitute the expression in the Vandermonde’s formula, we get
\[{20_{{{\text{C}}_{\text{r}}}}}{20_{{{\text{C}}_{\text{o}}}}} + {20_{{{\text{C}}_{{\text{r}} - 1}}}}{20_{{{\text{C}}_1}}} + {20_{{{\text{C}}_{{\text{r}} - 2}}}}{20_{{{\text{C}}_2}}} + \ldots + {20_{{{\text{C}}_{\text{o}}}}}{20_{{{\text{C}}_{\text{r}}}}}\]
= $2 \times {20_{{{\text{C}}_{\text{r}}}}}$
= ${40_{{{\text{C}}_{\text{r}}}}}$
Now ${40_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{40}}{2} = 20$.
(Note:- ${n_{{{\text{C}}_{\text{r}}}}}$ attains maximum at ${\text{r}} = \dfrac{{\text{n}}}{2}$ if n is even
and ${\text{r}} = \dfrac{{{\text{n}} + 1}}{2}$ if n is odd)
∴ Correct answer is (A) 20.
Note: One must be very careful in applying the Vandermonde’s formula as one should also check that it contains all the terms i.e from \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] … \[{{\text{n}}_{{{\text{C}}_{\text{r}}}}}\] \[{{\text{n}}_{{{\text{C}}_{\text{o}}}}}\].
If any one of the term is even missing, you cannot apply the formula.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

