
Find the value of $\phi $, If $\tan \left( {\theta + i\phi } \right) = {e^{i\alpha }}$,
A. $\dfrac{1}{2}\log \tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)$
B. $ - \dfrac{1}{2}\log \tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)$
C. $\dfrac{1}{2}\log \tan \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)$
D. $ - \dfrac{1}{2}\log \tan \left( {\dfrac{\pi }{4} - \dfrac{\alpha }{2}} \right)$
Answer
597k+ views
Hint: We need to convert the exponential function ${e^{i\alpha }}$ to $\cos \alpha + i\sin \alpha $ and making ${e^{ - i\alpha }} = \cos \alpha - i\sin \alpha $ equation to solve and get tangent ratio. Using trigonometric ratios we need to solve the above equation. In between we might need to use the hyperbolic functions as well.
Complete step-by-step answer:
Given $\tan \left( {\theta + i\phi } \right) = {e^{i\alpha }}$
Trigonometric values are based on three major trigonometric ratios, Sine, Cosine and Tangent.
Sine or $\sin \theta $= Side opposite to $\theta $ is to Hypotenuse.
Cosines or $\operatorname{Cos} \theta $= Adjacent side to $\theta $ is to Hypotenuse.
Tangent or $\tan \theta $= Side opposite to $\theta $ is to Adjacent side to$\theta $.
We know that ${e^{i\alpha }} = \cos \alpha + i\sin \alpha $
According to Euler’s formula, the fundamental relationship between the trigonometric functions and the complex exponential function is given by ${e^{ix}} = \cos x + i\sin x$ where x is a real number and i is imaginary number
Therefore $\cos \alpha + i\sin \alpha = \tan \left( {\theta + i\phi } \right)$… (1)
$ \Rightarrow \cos \alpha - i\sin \alpha = \tan \left( {\theta - i\phi } \right)$… (2)
From equations (1) and (2)
$\theta + i\phi = {\tan ^{ - 1}}{e^{i\alpha }}$… (3)
$\theta - i\phi = {\tan ^{ - 1}}{e^{ - i\alpha }}$… (4)
Subtracting (4) equation from (3) equation.
$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{{e^{i\alpha }} - {e^{ - i\alpha }}}}{{1 + {e^{i\alpha }}{e^{ - i\alpha }}}}} \right)$
$$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{\cos \alpha + i{\text{sin}}\alpha - (\cos \alpha - i{\text{sin}}\alpha )}}{2}} \right)$$
$$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{\cos \alpha + i{\text{sin}}\alpha - \cos \alpha + i{\text{sin}}\alpha }}{2}} \right)$$
$$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{2i{\text{sin}}\alpha }}{2}} \right)$$
$$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {i{\text{sin}}\alpha } \right)$$
$$ \Rightarrow \tan \left( {2i\phi } \right) = i{\text{sin}}\alpha $$
Hyperbolic functions are analogs of the ordinary trigonometric functions defined for the hyperbola rather than on the circle. It is a function of an angle expressed as a relationship between the distances from a point on a hyperbola to the origin and to the coordinate axes, as hyperbolic sine or hyperbolic cosine: often expressed as combinations of exponential functions.
We know that $$\tan \left( {i\theta } \right) = i\tanh \theta $$
Therefore,
$$ \Rightarrow i\tanh \left( {2\phi } \right) = i{\text{sin}}\alpha $$
$$ \Rightarrow \tanh \left( {2\phi } \right) = {\text{sin}}\alpha $$
$$ \Rightarrow 2\phi = {\tanh ^{ - 1}}\left( {{\text{sin}}\alpha } \right)$$
We know that${\tanh ^{ - 1}}x = \dfrac{1}{2}\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
Therefore,
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{{\text{1 + sin}}\alpha }}{{1 - {\text{sin}}\alpha }}} \right)$$
Since $\sin 2\alpha = \dfrac{{2\tan \alpha }}{{1 + {{\tan }^2}\alpha }}$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{{\text{1 + }}\dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}{{1 - \dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}} \right)$$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}{{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} - 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}} \right)$$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left[ {\left( {\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)\left( {\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2} - 2\tan \dfrac{\alpha }{2}}}} \right)} \right]$$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2} - 2\tan \dfrac{\alpha }{2}}}} \right)$$
We used ${a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}$and ${a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log {\left( {\dfrac{{1 + \tan \dfrac{\alpha }{2}}}{{1 - \tan \dfrac{\alpha }{2}}}} \right)^2}$$
$$ \Rightarrow 2\phi = \log \left( {\dfrac{{1 + \tan \dfrac{\alpha }{2}}}{{1 - \tan \dfrac{\alpha }{2}}}} \right)$$
Since $\tan \dfrac{\pi }{4} = 1$
$$ \Rightarrow 2\phi = \log \left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{\alpha }{2}}}{{1 - \tan \dfrac{\pi }{4}\tan \dfrac{\alpha }{2}}}} \right)$$
$$ \Rightarrow \phi = \dfrac{1}{2}\log \left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)} \right]$$
Therefore, If $\tan \left( {\theta + i\phi } \right) = {e^{i\alpha }}$then $$\phi = \dfrac{1}{2}\log \left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)} \right]$$
Note: Trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables where both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. To solve the given type of problems we have to use the trigonometric identities.
Complete step-by-step answer:
Given $\tan \left( {\theta + i\phi } \right) = {e^{i\alpha }}$
Trigonometric values are based on three major trigonometric ratios, Sine, Cosine and Tangent.
Sine or $\sin \theta $= Side opposite to $\theta $ is to Hypotenuse.
Cosines or $\operatorname{Cos} \theta $= Adjacent side to $\theta $ is to Hypotenuse.
Tangent or $\tan \theta $= Side opposite to $\theta $ is to Adjacent side to$\theta $.
We know that ${e^{i\alpha }} = \cos \alpha + i\sin \alpha $
According to Euler’s formula, the fundamental relationship between the trigonometric functions and the complex exponential function is given by ${e^{ix}} = \cos x + i\sin x$ where x is a real number and i is imaginary number
Therefore $\cos \alpha + i\sin \alpha = \tan \left( {\theta + i\phi } \right)$… (1)
$ \Rightarrow \cos \alpha - i\sin \alpha = \tan \left( {\theta - i\phi } \right)$… (2)
From equations (1) and (2)
$\theta + i\phi = {\tan ^{ - 1}}{e^{i\alpha }}$… (3)
$\theta - i\phi = {\tan ^{ - 1}}{e^{ - i\alpha }}$… (4)
Subtracting (4) equation from (3) equation.
$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{{e^{i\alpha }} - {e^{ - i\alpha }}}}{{1 + {e^{i\alpha }}{e^{ - i\alpha }}}}} \right)$
$$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{\cos \alpha + i{\text{sin}}\alpha - (\cos \alpha - i{\text{sin}}\alpha )}}{2}} \right)$$
$$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{\cos \alpha + i{\text{sin}}\alpha - \cos \alpha + i{\text{sin}}\alpha }}{2}} \right)$$
$$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {\dfrac{{2i{\text{sin}}\alpha }}{2}} \right)$$
$$ \Rightarrow 2i\phi = {\tan ^{ - 1}}\left( {i{\text{sin}}\alpha } \right)$$
$$ \Rightarrow \tan \left( {2i\phi } \right) = i{\text{sin}}\alpha $$
Hyperbolic functions are analogs of the ordinary trigonometric functions defined for the hyperbola rather than on the circle. It is a function of an angle expressed as a relationship between the distances from a point on a hyperbola to the origin and to the coordinate axes, as hyperbolic sine or hyperbolic cosine: often expressed as combinations of exponential functions.
We know that $$\tan \left( {i\theta } \right) = i\tanh \theta $$
Therefore,
$$ \Rightarrow i\tanh \left( {2\phi } \right) = i{\text{sin}}\alpha $$
$$ \Rightarrow \tanh \left( {2\phi } \right) = {\text{sin}}\alpha $$
$$ \Rightarrow 2\phi = {\tanh ^{ - 1}}\left( {{\text{sin}}\alpha } \right)$$
We know that${\tanh ^{ - 1}}x = \dfrac{1}{2}\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
Therefore,
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{{\text{1 + sin}}\alpha }}{{1 - {\text{sin}}\alpha }}} \right)$$
Since $\sin 2\alpha = \dfrac{{2\tan \alpha }}{{1 + {{\tan }^2}\alpha }}$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{{\text{1 + }}\dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}{{1 - \dfrac{{2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}} \right)$$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}{{\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} - 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}}}} \right)$$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left[ {\left( {\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}} \right)\left( {\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2} - 2\tan \dfrac{\alpha }{2}}}} \right)} \right]$$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log \left( {\dfrac{{1 + {{\tan }^2}\dfrac{\alpha }{2} + 2\tan \dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2} - 2\tan \dfrac{\alpha }{2}}}} \right)$$
We used ${a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}$and ${a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}$
$$ \Rightarrow 2\phi = \dfrac{1}{2}\log {\left( {\dfrac{{1 + \tan \dfrac{\alpha }{2}}}{{1 - \tan \dfrac{\alpha }{2}}}} \right)^2}$$
$$ \Rightarrow 2\phi = \log \left( {\dfrac{{1 + \tan \dfrac{\alpha }{2}}}{{1 - \tan \dfrac{\alpha }{2}}}} \right)$$
Since $\tan \dfrac{\pi }{4} = 1$
$$ \Rightarrow 2\phi = \log \left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{\alpha }{2}}}{{1 - \tan \dfrac{\pi }{4}\tan \dfrac{\alpha }{2}}}} \right)$$
$$ \Rightarrow \phi = \dfrac{1}{2}\log \left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)} \right]$$
Therefore, If $\tan \left( {\theta + i\phi } \right) = {e^{i\alpha }}$then $$\phi = \dfrac{1}{2}\log \left[ {\tan \left( {\dfrac{\pi }{4} + \dfrac{\alpha }{2}} \right)} \right]$$
Note: Trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables where both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles. To solve the given type of problems we have to use the trigonometric identities.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

