
Find the value of p if in the given data. The mean is 54.
Class Interval 0-20 20-40 40-60 60-80 80-100 Frequency 7 p 10 9 13
| Class Interval | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
| Frequency | 7 | p | 10 | 9 | 13 |
Answer
586.2k+ views
Hint: We will first find the classmark which will be a representative of the whole group. We know the formula of the mean. We will make a new table to calculate the mean from ourselves and then we will equate it to the given value to get the value of p.
Complete step-by-step solution:
We have this data,
We will calculate Class Mark= $\dfrac{\text{upper class limit +lower class limit }}{2}$
If I want to calculate Class Mark of interval 0-20 I will upper limit=20 and lower limit=0
I will get class mark =10
We know the formula of mean, given by,
\[\Rightarrow \bar{x}=\dfrac{\sum{{{f}_{i}}{{x}_{i}}}}{\sum{{{f}_{i}}}}\]
We will make a new table having columns Class mark(${{x}_{i}}$), ${{f}_{i}}{{x}_{i}}$
From the table we will calculate \[\sum{{{f}_{i}}{{x}_{i}}}\] and \[\sum{{{f}_{i}}}\]
\[\begin{align}
& \Rightarrow \sum{{{f}_{i}}{{x}_{i}}}=70+30p+500+630+1170 \\
& \Rightarrow \sum{{{f}_{i}}{{x}_{i}}}=2370+30p \\
\end{align}\]
\[\begin{align}
& \Rightarrow \sum{{{f}_{i}}}=7+p+10+9+13 \\
& \Rightarrow \sum{{{f}_{i}}}=39+p \\
\end{align}\]
We will put the value in the formula
$\begin{align}
& \Rightarrow \bar{x}=\dfrac{\sum{{{f}_{i}}{{x}_{i}}}}{\sum{{{f}_{i}}}} \\
& \Rightarrow \bar{x}=\dfrac{2370+30p}{39+p} \\
& \Rightarrow 54=\dfrac{2370+30p}{39+p} \\
& \Rightarrow 54(39+p)=2370+30p \\
& \Rightarrow 2106+54p=2370+30p \\
& \Rightarrow 24p=264 \\
& \Rightarrow p=11 \\
\end{align}$
Note: It is mandatory to convert the class interval to class mark, then only we can calculate the value of \[\bar{x}\] . Many times, we assume that if mean( \[\bar{x}\] ) is given in the question it means average, then we try to apply this formula \[\dfrac{\sum{{{f}_{i}}}}{\text{Number of elements}}\] and equate to given value. Using this approach will give us the wrong answer. It is mandatory to apply this formula \[\Rightarrow \bar{x}=\dfrac{\sum{{{f}_{i}}{{x}_{i}}}}{\sum{{{f}_{i}}}}\].
Complete step-by-step solution:
We have this data,
| Class Interval | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 |
| Frequency | 7 | p | 10 | 9 | 13 |
We will calculate Class Mark= $\dfrac{\text{upper class limit +lower class limit }}{2}$
If I want to calculate Class Mark of interval 0-20 I will upper limit=20 and lower limit=0
I will get class mark =10
We know the formula of mean, given by,
\[\Rightarrow \bar{x}=\dfrac{\sum{{{f}_{i}}{{x}_{i}}}}{\sum{{{f}_{i}}}}\]
We will make a new table having columns Class mark(${{x}_{i}}$), ${{f}_{i}}{{x}_{i}}$
| Class Interval | Class Mark (${{x}_{i}}$) | Frequency (\[{{f}_{i}}\]) | \[{{f}_{i}}{{x}_{i}}\] |
| 0-20 | 10 | 7 | 70 |
| 20-40 | 30 | p | 30p |
| 40-60 | 50 | 10 | 500 |
| 60-80 | 70 | 9 | 630 |
| 80-100 | 90 | 13 | 1170 |
From the table we will calculate \[\sum{{{f}_{i}}{{x}_{i}}}\] and \[\sum{{{f}_{i}}}\]
\[\begin{align}
& \Rightarrow \sum{{{f}_{i}}{{x}_{i}}}=70+30p+500+630+1170 \\
& \Rightarrow \sum{{{f}_{i}}{{x}_{i}}}=2370+30p \\
\end{align}\]
\[\begin{align}
& \Rightarrow \sum{{{f}_{i}}}=7+p+10+9+13 \\
& \Rightarrow \sum{{{f}_{i}}}=39+p \\
\end{align}\]
We will put the value in the formula
$\begin{align}
& \Rightarrow \bar{x}=\dfrac{\sum{{{f}_{i}}{{x}_{i}}}}{\sum{{{f}_{i}}}} \\
& \Rightarrow \bar{x}=\dfrac{2370+30p}{39+p} \\
& \Rightarrow 54=\dfrac{2370+30p}{39+p} \\
& \Rightarrow 54(39+p)=2370+30p \\
& \Rightarrow 2106+54p=2370+30p \\
& \Rightarrow 24p=264 \\
& \Rightarrow p=11 \\
\end{align}$
Note: It is mandatory to convert the class interval to class mark, then only we can calculate the value of \[\bar{x}\] . Many times, we assume that if mean( \[\bar{x}\] ) is given in the question it means average, then we try to apply this formula \[\dfrac{\sum{{{f}_{i}}}}{\text{Number of elements}}\] and equate to given value. Using this approach will give us the wrong answer. It is mandatory to apply this formula \[\Rightarrow \bar{x}=\dfrac{\sum{{{f}_{i}}{{x}_{i}}}}{\sum{{{f}_{i}}}}\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

