
Find the value of other five trigonometric ratios:
$\tan x = - \dfrac{5}{{12}}$ , x lies in the second quadrant.
Answer
512.4k+ views
Hint: Given that x lies in the second quadrant. Now if x lies in the 2nd quadrant, only \[\sin x\] and \[cosecx\] is positive.
Also, note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
Now, the value of \[tanx\] is given. Therefore find the value of the other five trigonometric ratios with the help of aforementioned formulae.
Complete step-by-step answer:
Given, $\tan x = - \dfrac{5}{{12}}$
Therefore $\cot x = \dfrac{1}{{\tan x}} = - \dfrac{{12}}{5}$
\[\because {\sec ^2}x - {\tan ^2}x = 1\]
\[ \Rightarrow {\sec ^2}x = 1 + {\tan ^2}x\]
Taking square root on both the sides we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\tan }^2}x} \]
On substituting the value of \[tanx\] we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\left( { - \dfrac{5}{{12}}} \right)}^2}} = \pm \sqrt {1 + \dfrac{{25}}{{144}}} \]
As, x lies in the second quadrant, so the value of \[secx\] is negative,
\[ \Rightarrow \sec x = - \dfrac{{13}}{{12}}\]
Therefore $\cos x = \dfrac{1}{{\sec x}} = - \dfrac{{12}}{{13}}$
Now,
$\tan x = \dfrac{{\sin x}}{{\cos x}} = - \dfrac{5}{{12}}$
$ \Rightarrow \sin x = \cos x \times \left( { - \dfrac{5}{{12}}} \right)$
On substituting the value of \[cosx\] we get,
$ \Rightarrow \sin x = \left( { - \dfrac{{1{2}}}{{13}}} \right) \times \left( { - \dfrac{5}{{1{2}}}} \right) = \dfrac{5}{{13}}$
Therefore, $\operatorname{cosecx} = \dfrac{1}{{\sin x}} = \dfrac{{13}}{5}$
Hence when $\tan x = - \dfrac{5}{{12}}$ and x lies in second quadrant, the other five trigonometric ratios are :
\[co\operatorname{t} x = - \dfrac{{12}}{5}\] , $\sin x = \dfrac{5}{{13}}$ , $\cos x = - \dfrac{{12}}{{13}}$, \[\sec x = - \dfrac{{13}}{{12}}\] and $\operatorname{cosecx} = \dfrac{{13}}{5}$
Note:Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Also, note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
Now, the value of \[tanx\] is given. Therefore find the value of the other five trigonometric ratios with the help of aforementioned formulae.
Complete step-by-step answer:
Given, $\tan x = - \dfrac{5}{{12}}$
Therefore $\cot x = \dfrac{1}{{\tan x}} = - \dfrac{{12}}{5}$
\[\because {\sec ^2}x - {\tan ^2}x = 1\]
\[ \Rightarrow {\sec ^2}x = 1 + {\tan ^2}x\]
Taking square root on both the sides we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\tan }^2}x} \]
On substituting the value of \[tanx\] we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\left( { - \dfrac{5}{{12}}} \right)}^2}} = \pm \sqrt {1 + \dfrac{{25}}{{144}}} \]
As, x lies in the second quadrant, so the value of \[secx\] is negative,
\[ \Rightarrow \sec x = - \dfrac{{13}}{{12}}\]
Therefore $\cos x = \dfrac{1}{{\sec x}} = - \dfrac{{12}}{{13}}$
Now,
$\tan x = \dfrac{{\sin x}}{{\cos x}} = - \dfrac{5}{{12}}$
$ \Rightarrow \sin x = \cos x \times \left( { - \dfrac{5}{{12}}} \right)$
On substituting the value of \[cosx\] we get,
$ \Rightarrow \sin x = \left( { - \dfrac{{1{2}}}{{13}}} \right) \times \left( { - \dfrac{5}{{1{2}}}} \right) = \dfrac{5}{{13}}$
Therefore, $\operatorname{cosecx} = \dfrac{1}{{\sin x}} = \dfrac{{13}}{5}$
Hence when $\tan x = - \dfrac{5}{{12}}$ and x lies in second quadrant, the other five trigonometric ratios are :
\[co\operatorname{t} x = - \dfrac{{12}}{5}\] , $\sin x = \dfrac{5}{{13}}$ , $\cos x = - \dfrac{{12}}{{13}}$, \[\sec x = - \dfrac{{13}}{{12}}\] and $\operatorname{cosecx} = \dfrac{{13}}{5}$
Note:Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:

Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE
