
Find the value of other five trigonometric ratios:
$\tan x = - \dfrac{5}{{12}}$ , x lies in the second quadrant.
Answer
577.2k+ views
Hint: Given that x lies in the second quadrant. Now if x lies in the 2nd quadrant, only \[\sin x\] and \[cosecx\] is positive.
Also, note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
Now, the value of \[tanx\] is given. Therefore find the value of the other five trigonometric ratios with the help of aforementioned formulae.
Complete step-by-step answer:
Given, $\tan x = - \dfrac{5}{{12}}$
Therefore $\cot x = \dfrac{1}{{\tan x}} = - \dfrac{{12}}{5}$
\[\because {\sec ^2}x - {\tan ^2}x = 1\]
\[ \Rightarrow {\sec ^2}x = 1 + {\tan ^2}x\]
Taking square root on both the sides we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\tan }^2}x} \]
On substituting the value of \[tanx\] we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\left( { - \dfrac{5}{{12}}} \right)}^2}} = \pm \sqrt {1 + \dfrac{{25}}{{144}}} \]
As, x lies in the second quadrant, so the value of \[secx\] is negative,
\[ \Rightarrow \sec x = - \dfrac{{13}}{{12}}\]
Therefore $\cos x = \dfrac{1}{{\sec x}} = - \dfrac{{12}}{{13}}$
Now,
$\tan x = \dfrac{{\sin x}}{{\cos x}} = - \dfrac{5}{{12}}$
$ \Rightarrow \sin x = \cos x \times \left( { - \dfrac{5}{{12}}} \right)$
On substituting the value of \[cosx\] we get,
$ \Rightarrow \sin x = \left( { - \dfrac{{1{2}}}{{13}}} \right) \times \left( { - \dfrac{5}{{1{2}}}} \right) = \dfrac{5}{{13}}$
Therefore, $\operatorname{cosecx} = \dfrac{1}{{\sin x}} = \dfrac{{13}}{5}$
Hence when $\tan x = - \dfrac{5}{{12}}$ and x lies in second quadrant, the other five trigonometric ratios are :
\[co\operatorname{t} x = - \dfrac{{12}}{5}\] , $\sin x = \dfrac{5}{{13}}$ , $\cos x = - \dfrac{{12}}{{13}}$, \[\sec x = - \dfrac{{13}}{{12}}\] and $\operatorname{cosecx} = \dfrac{{13}}{5}$
Note:Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Also, note the following important formulae:
$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
${\sin ^2}x + {\cos ^2}x = 1$
\[{\sec ^2}x - {\tan ^2}x = 1\]
\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
Now, the value of \[tanx\] is given. Therefore find the value of the other five trigonometric ratios with the help of aforementioned formulae.
Complete step-by-step answer:
Given, $\tan x = - \dfrac{5}{{12}}$
Therefore $\cot x = \dfrac{1}{{\tan x}} = - \dfrac{{12}}{5}$
\[\because {\sec ^2}x - {\tan ^2}x = 1\]
\[ \Rightarrow {\sec ^2}x = 1 + {\tan ^2}x\]
Taking square root on both the sides we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\tan }^2}x} \]
On substituting the value of \[tanx\] we get,
\[ \Rightarrow \sec x = \pm \sqrt {1 + {{\left( { - \dfrac{5}{{12}}} \right)}^2}} = \pm \sqrt {1 + \dfrac{{25}}{{144}}} \]
As, x lies in the second quadrant, so the value of \[secx\] is negative,
\[ \Rightarrow \sec x = - \dfrac{{13}}{{12}}\]
Therefore $\cos x = \dfrac{1}{{\sec x}} = - \dfrac{{12}}{{13}}$
Now,
$\tan x = \dfrac{{\sin x}}{{\cos x}} = - \dfrac{5}{{12}}$
$ \Rightarrow \sin x = \cos x \times \left( { - \dfrac{5}{{12}}} \right)$
On substituting the value of \[cosx\] we get,
$ \Rightarrow \sin x = \left( { - \dfrac{{1{2}}}{{13}}} \right) \times \left( { - \dfrac{5}{{1{2}}}} \right) = \dfrac{5}{{13}}$
Therefore, $\operatorname{cosecx} = \dfrac{1}{{\sin x}} = \dfrac{{13}}{5}$
Hence when $\tan x = - \dfrac{5}{{12}}$ and x lies in second quadrant, the other five trigonometric ratios are :
\[co\operatorname{t} x = - \dfrac{{12}}{5}\] , $\sin x = \dfrac{5}{{13}}$ , $\cos x = - \dfrac{{12}}{{13}}$, \[\sec x = - \dfrac{{13}}{{12}}\] and $\operatorname{cosecx} = \dfrac{{13}}{5}$
Note:Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

