
Find the value of \[{}^n{C_r} + {}^n{C_{r - 1}}\]:
Answer
569.1k+ views
Hint: Here we will use the combination formula for expanding the terms which state that \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] where \[n\] is the total number of items in the set and \[r\] is the selected ones from that set.
Complete step-by-step answer:
Step 1: By expanding the term \[{}^n{C_r} + {}^n{C_{r - 1}}\] as \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] , \[{}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}\]and writing the term as below:
\[{}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}\]
Taking \[\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\] common in RHS side of \[{}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}\], we get:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right)\] ………… (1)
Step 2: Now in the above equation (1), by multiplying and dividing the two fractions inside the bracket using common factors. We ensure that denominators are the same:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 1} \right)}}{{r\left( {n - r + 1} \right)}} + \dfrac{{1 \cdot r}}{{r\left( {n - r + 1} \right)}}} \right)\]………… (2)
Now, in the above equation (2) by multiplying the factors and adding the two fractions we get:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n - r + 1 + r}}{{r\left( {n - r + 1} \right)}}} \right)\]
By simplifying inside the brackets, we get:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n + 1}}{{r\left( {n - r + 1} \right)}}} \right)\]……….. (3)
Step 3: Now, we can write \[n! \times \left( {n + 1} \right) = \left( {n + 1} \right)!\], \[r \times \left( {r - 1} \right)! = r!\] and \[\left( {n - r} \right)! \times \left( {n - r + 1} \right) = \left( {n - r + 1} \right)!\] substituting these values in the above expression (3):
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{\left( {n + 1} \right)!}}{{r!\left( {n - r + 1} \right)!}}\]
Step 4: By comparing the above term \[\dfrac{{\left( {n + 1} \right)!}}{{r!\left( {n - r + 1} \right)!}}\] from the combination formula \[{}^p{C_q} = \dfrac{{p!}}{{q!\left( {p - q} \right)!}}\], the final result will be:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
So, the answer is \[{}^{n + 1}{C_r}\].
Note: Students can also try to solve these types of the problem by using the pascal formula which states for any positive natural numbers \[p\] and \[q\] with \[p \geqslant q\]:
\[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] where \[{}^p{C_q} = \dfrac{{p!}}{{q!\left( {p - q} \right)!}}\], \[{}^p{C_{q - 1}} = \dfrac{{p!}}{{\left( {q - 1} \right)!\left( {p - \left( {q - 1} \right)} \right)!}}\] and \[{}^{p + 1}{C_q} = \dfrac{{\left( {p + 1} \right)!}}{{\left( q \right)!\left( {p + 1 - q} \right)!}}\]
Step 1: We need to find the value of \[{}^n{C_r} + {}^n{C_{r - 1}}\]. By applying combination rule here which states that:
To calculate the total number of outcomes of an event where \[n\]represents the total number of items in the set and \[r\]represents the number of selected items being chosen at a time and \[C\] states for combination:
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Step 2: Now, for finding the value of the term \[{}^n{C_r} + {}^n{C_{r - 1}}\] , we will use the pascal rule which states that for \[p \geqslant q\] and \[p\] & \[q\] are positive natural numbers:
\[ \Rightarrow {}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\]
Step 3: By comparing the term \[{}^n{C_r} + {}^n{C_{r - 1}}\] with the pascal formula \[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] , we can write the expression as below:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}{\text{ (}}\because {\text{by using pascal's rule)}}\]
Where, \[p = n\] and \[q = r\].
Students should not confuse between the permutation and combination formula. There is a major difference between the formula for both terms:
Permutation formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] .
Complete step-by-step answer:
Step 1: By expanding the term \[{}^n{C_r} + {}^n{C_{r - 1}}\] as \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] , \[{}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}\]and writing the term as below:
\[{}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}\]
Taking \[\dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\] common in RHS side of \[{}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} + \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)!}}\], we get:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{1}{r} + \dfrac{1}{{n - r + 1}}} \right)\] ………… (1)
Step 2: Now in the above equation (1), by multiplying and dividing the two fractions inside the bracket using common factors. We ensure that denominators are the same:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{1 \cdot \left( {n - r + 1} \right)}}{{r\left( {n - r + 1} \right)}} + \dfrac{{1 \cdot r}}{{r\left( {n - r + 1} \right)}}} \right)\]………… (2)
Now, in the above equation (2) by multiplying the factors and adding the two fractions we get:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n - r + 1 + r}}{{r\left( {n - r + 1} \right)}}} \right)\]
By simplifying inside the brackets, we get:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{n!}}{{\left( {r - 1} \right)!\left( {n - r} \right)!}}\left( {\dfrac{{n + 1}}{{r\left( {n - r + 1} \right)}}} \right)\]……….. (3)
Step 3: Now, we can write \[n! \times \left( {n + 1} \right) = \left( {n + 1} \right)!\], \[r \times \left( {r - 1} \right)! = r!\] and \[\left( {n - r} \right)! \times \left( {n - r + 1} \right) = \left( {n - r + 1} \right)!\] substituting these values in the above expression (3):
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = \dfrac{{\left( {n + 1} \right)!}}{{r!\left( {n - r + 1} \right)!}}\]
Step 4: By comparing the above term \[\dfrac{{\left( {n + 1} \right)!}}{{r!\left( {n - r + 1} \right)!}}\] from the combination formula \[{}^p{C_q} = \dfrac{{p!}}{{q!\left( {p - q} \right)!}}\], the final result will be:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}\]
So, the answer is \[{}^{n + 1}{C_r}\].
Note: Students can also try to solve these types of the problem by using the pascal formula which states for any positive natural numbers \[p\] and \[q\] with \[p \geqslant q\]:
\[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] where \[{}^p{C_q} = \dfrac{{p!}}{{q!\left( {p - q} \right)!}}\], \[{}^p{C_{q - 1}} = \dfrac{{p!}}{{\left( {q - 1} \right)!\left( {p - \left( {q - 1} \right)} \right)!}}\] and \[{}^{p + 1}{C_q} = \dfrac{{\left( {p + 1} \right)!}}{{\left( q \right)!\left( {p + 1 - q} \right)!}}\]
Step 1: We need to find the value of \[{}^n{C_r} + {}^n{C_{r - 1}}\]. By applying combination rule here which states that:
To calculate the total number of outcomes of an event where \[n\]represents the total number of items in the set and \[r\]represents the number of selected items being chosen at a time and \[C\] states for combination:
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Step 2: Now, for finding the value of the term \[{}^n{C_r} + {}^n{C_{r - 1}}\] , we will use the pascal rule which states that for \[p \geqslant q\] and \[p\] & \[q\] are positive natural numbers:
\[ \Rightarrow {}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\]
Step 3: By comparing the term \[{}^n{C_r} + {}^n{C_{r - 1}}\] with the pascal formula \[{}^p{C_q} + {}^p{C_{q - 1}} = {}^{p + 1}{C_q}\] , we can write the expression as below:
\[ \Rightarrow {}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}{\text{ (}}\because {\text{by using pascal's rule)}}\]
Where, \[p = n\] and \[q = r\].
Students should not confuse between the permutation and combination formula. There is a major difference between the formula for both terms:
Permutation formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

