
Find the value of n If $$10\ ^{n} C_{2}=3\ ^{n+1} C_{3}$$.
Answer
591.6k+ views
Hint: In this question it is given that if $$10\ ^{n} C_{2}=3\ ^{n+1} C_{3}$$ then we have to find the value of n. So to find the solution we have to use the combination formula,
i.e, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$......(1)
Where, $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$ and also we can write $$n!=n\cdot \left( n-1\right) !$$
Complete step-by-step solution:
Given equation,
$$10\ ^{n} C_{2}=3\ ^{n+1} C_{3}$$
$$\Rightarrow 10\ \dfrac{n!}{2!\cdot \left( n-2\right) !} =3\ \dfrac{\left( n+1\right) !}{3!\cdot \left( n+1-3\right) !}$$
$$\Rightarrow 10\ \dfrac{n!}{2\cdot 1\cdot \left( n-2\right) !} =3\ \dfrac{\left( n+1\right) \cdot n!}{3\cdot 2\cdot 1\cdot \left( n-2\right) !}$$
$$\Rightarrow 10\ \dfrac{n!}{2\cdot 1\cdot \left( n-2\right) !} =\ \dfrac{\left( n+1\right) \cdot n!}{2\cdot 1\cdot \left( n-2\right) !}$$
$$\Rightarrow 10\ \dfrac{n!}{\left( n-2\right) !} =\ \dfrac{\left( n+1\right) \cdot n!}{\left( n-2\right) !}$$
$$\Rightarrow 10\cdot n!=\ \left( n+1\right) \cdot n!$$ [ cancelling (n-2)! on the both side of denominator]
$$\Rightarrow 10=\left( n+1\right) $$ [canceling n! on the both side]
$$\Rightarrow \left( n+1\right) =10$$
$$\Rightarrow n=10-1$$
$$\Rightarrow n=9$$
Note: While solving this type of problem you need to know that ${}^{n}C_{r}$ defines choosing r number of different items from n number of different items also to solve the combination related equation you have to expand the equation upto a certain steps, like we expand during the solution.
i.e, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$......(1)
Where, $$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 3\cdot 2\cdot 1$$ and also we can write $$n!=n\cdot \left( n-1\right) !$$
Complete step-by-step solution:
Given equation,
$$10\ ^{n} C_{2}=3\ ^{n+1} C_{3}$$
$$\Rightarrow 10\ \dfrac{n!}{2!\cdot \left( n-2\right) !} =3\ \dfrac{\left( n+1\right) !}{3!\cdot \left( n+1-3\right) !}$$
$$\Rightarrow 10\ \dfrac{n!}{2\cdot 1\cdot \left( n-2\right) !} =3\ \dfrac{\left( n+1\right) \cdot n!}{3\cdot 2\cdot 1\cdot \left( n-2\right) !}$$
$$\Rightarrow 10\ \dfrac{n!}{2\cdot 1\cdot \left( n-2\right) !} =\ \dfrac{\left( n+1\right) \cdot n!}{2\cdot 1\cdot \left( n-2\right) !}$$
$$\Rightarrow 10\ \dfrac{n!}{\left( n-2\right) !} =\ \dfrac{\left( n+1\right) \cdot n!}{\left( n-2\right) !}$$
$$\Rightarrow 10\cdot n!=\ \left( n+1\right) \cdot n!$$ [ cancelling (n-2)! on the both side of denominator]
$$\Rightarrow 10=\left( n+1\right) $$ [canceling n! on the both side]
$$\Rightarrow \left( n+1\right) =10$$
$$\Rightarrow n=10-1$$
$$\Rightarrow n=9$$
Note: While solving this type of problem you need to know that ${}^{n}C_{r}$ defines choosing r number of different items from n number of different items also to solve the combination related equation you have to expand the equation upto a certain steps, like we expand during the solution.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

