
Find the value of n by solving the equation $\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}}$ where, n>4.
Answer
616.8k+ views
Hint: In order to solve this problem you need to know the formula $^{\text{a}}{{\text{P}}_{\text{b}}}{\text{ = }}\dfrac{{{\text{a!}}}}{{{\text{(a - b)!}}}}$. Using this formula you will get the right answer to this question.
Complete step-by-step answer:
We need to find the value of n.
We have the equation $\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}}$.
We know the formula $^{\text{a}}{{\text{P}}_{\text{b}}}{\text{ = }}\dfrac{{{\text{a!}}}}{{{\text{(a - b)!}}}}$………….(1)
So, we will expand only LHS of the equation $\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}}$ with the help of (1).
So, $\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}} = \dfrac{{\dfrac{{n!}}{{(n - 4)!}}}}{{\dfrac{{(n - 1)!}}{{(n - 1 - 4)!}}}} = \dfrac{{n!\, \times \,(n - 5)!}}{{(n - 4)!\, \times \,(n - 1)!}} = \dfrac{n}{{n - 4}}\,\,\,\,\,\,.....................(2)$
From (1) and (2) we can do,
$
\dfrac{{\text{n}}}{{{\text{n - 4}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}} \\
{\text{3n = 5n - 20}} \\
{\text{2n = 20}} \\
{\text{n = 10}} \\
$
Hence the value of n is 10.
Note: In this type of questions students may confuse with the formulas of $^{\text{a}}{{\text{P}}_{\text{b}}}$ and $^{\text{n}}{{\text{C}}_{\text{r}}}$.
Complete step-by-step answer:
We need to find the value of n.
We have the equation $\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}}$.
We know the formula $^{\text{a}}{{\text{P}}_{\text{b}}}{\text{ = }}\dfrac{{{\text{a!}}}}{{{\text{(a - b)!}}}}$………….(1)
So, we will expand only LHS of the equation $\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}}$ with the help of (1).
So, $\dfrac{{^{\text{n}}{{\text{P}}_{\text{4}}}}}{{^{{\text{n - 1}}}{{\text{P}}_{\text{4}}}}} = \dfrac{{\dfrac{{n!}}{{(n - 4)!}}}}{{\dfrac{{(n - 1)!}}{{(n - 1 - 4)!}}}} = \dfrac{{n!\, \times \,(n - 5)!}}{{(n - 4)!\, \times \,(n - 1)!}} = \dfrac{n}{{n - 4}}\,\,\,\,\,\,.....................(2)$
From (1) and (2) we can do,
$
\dfrac{{\text{n}}}{{{\text{n - 4}}}}{\text{ = }}\dfrac{{\text{5}}}{{\text{3}}} \\
{\text{3n = 5n - 20}} \\
{\text{2n = 20}} \\
{\text{n = 10}} \\
$
Hence the value of n is 10.
Note: In this type of questions students may confuse with the formulas of $^{\text{a}}{{\text{P}}_{\text{b}}}$ and $^{\text{n}}{{\text{C}}_{\text{r}}}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

