Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the value of $ \mu $ for which one root of the quadratic equation $ \mu {{\text{x}}^{\text{2}}} - {\text{14x}} + {\text{8 = 0}} $ is $ 6 $ times the other.

Answer
VerifiedVerified
566.4k+ views
Hint: General form of quadratic equation is $ {\text{a}}{{\text{x}}^{\text{2}}} + {\text{bx}} + {\text{c}} = {\text{0}} $
If $ \alpha $ and $ \beta $ are the roots of the given quadratic equation, then
Sum of the roots of the equation is $ - \dfrac{{\text{b}}}{{\text{a}}} $
Product of the roots of the equation is $ \dfrac{{\text{c}}}{{\text{a}}} $
Follow the given conditions in the question and solve accordingly.

Complete step-by-step answer:
Given: The quadratic equation is $ \mu {{\text{x}}^{\text{2}}} - {\text{14x}} + {\text{8 = 0}} $
One root of the equation given is $ 6 $ times the other.
We need to find the value of $ \mu $
Let the roots of the given quadratic equation be $ \alpha $ and $ \beta $ respectively.
According to the question,
 $ \alpha $ is 6 times of $ \beta $
 $ \Rightarrow \alpha = 6 \times \beta $
Sum of the roots of the equation in general form $ {\text{a}}{{\text{x}}^{\text{2}}} + {\text{bx}} + {\text{c}} = {\text{0}} $ is $ - \dfrac{{\text{b}}}{{\text{a}}} $
Comparing the given equation $ \mu {{\text{x}}^{\text{2}}} - {\text{14x}} + {\text{8 = 0}} $ with the general form, we get
 $
  {\text{a}} = \mu \\
  {\text{b}} = - 14 \\
  {\text{c}} = 8 \;
  $
 $ \alpha + \beta = - \dfrac{{\text{b}}}{{\text{a}}} = - \left( {\dfrac{{ - {\text{14}}}}{\mu }} \right) $
 $ \Rightarrow \alpha + \beta = \dfrac{{14}}{\mu } $ ……..Equation (1)
Given that $ \alpha = 6 \times \beta $
Substituting $ \alpha = 6 \times \beta $ in Equation (1)
We get,
 $
  {\text{6}}\beta + \beta = \dfrac{{{\text{14}}}}{\mu } \\
   \Rightarrow {\text{7}}\beta = \dfrac{{{\text{14}}}}{\mu } \;
  $
 $ \Rightarrow \beta = \dfrac{2}{\mu } $ ……..Equation (2)
Product of the roots of the equation in general form $ {\text{a}}{{\text{x}}^{\text{2}}} + {\text{bx}} + {\text{c}} = {\text{0}} $ is $ \dfrac{{\text{c}}}{{\text{a}}} $
 $ \alpha \times \beta = \dfrac{c}{a} = \dfrac{8}{\mu } $ ……..Equation (3)
Substituting $ \alpha = 6 \times \beta $ in Equation (3)
We get,
 $ 6\beta \times \beta = \dfrac{8}{\mu } $
 $ \Rightarrow 6{\beta ^2} = \dfrac{8}{\mu } $ ……..Equation (4)
Substituting Equation (2) in Equation (4) , we get
 $
  {\text{6}} \times {\left( {\dfrac{{\text{2}}}{\mu }} \right)^{\text{2}}} = \dfrac{{\text{8}}}{\mu } \\
   \Rightarrow {\text{6}} \times \dfrac{{\text{4}}}{{{\mu ^{\text{2}}}}} = \dfrac{{\text{8}}}{\mu } \\
   \Rightarrow \mu = 3 \;
  $
Therefore, the value of $ \mu $ is $ 3 $ .
So, the correct answer is “3”.

Note: In this type of questions which involves the concept of quadratic equations, we need to have knowledge about the formulae related to sum of roots and product of roots of a general quadratic equation. Be careful with calculations as we come across many calculations. Follow the conditions given in the question and solve them accordingly to find the required answer.
WhatsApp Banner