
Find the value of $M=\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}}$.
Answer
597k+ views
Hint: Observe the relation between the angles of the terms of the given expression. Use trigonometric identities of $\cot \left( A+B \right)=\dfrac{\cot A\cot B-1}{\cot B+\cot A}$ and $\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$ to solve it further.
Complete step-by-step answer:
The given expression is $\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}}=?$
Let us suppose the value of given expression be M. Hence, we can write
$M=\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}}$ ………………… (i)
We know the identities of $\cot \left( A+B \right)$ and $\cot \left( A-B \right)$ can be given as
$\cot \left( A+B \right)=\dfrac{\cot A\cot B-1}{\operatorname{cotB}+cotA}$ ………………… (ii)
$\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$…………………(iii)
Now, we can observe the equation (i) and get that the sum of angles of first two expressions are ${{60}^{o}}$ and ${{120}^{o}}$ respectively and difference of angles of last expression $\left( \cot {{76}^{0}}\cot {{16}^{o}} \right)$ is ${{60}^{o}}$.
Hence, we can get value of $cot {{16}^{o}}cot {{44}^{o}}$ from equation (ii) by substituting $A={{16}^{o}}$ and $B={{44}^{o}}$. Hence, we get
$\begin{align}
& \cot \left( {{44}^{o}}+{{16}^{o}} \right)=\dfrac{\cot {{44}^{o}}\cot {{16}^{o}}-1}{\cot {{44}^{o}}+\cot {{16}^{o}}} \\
& \cot {{60}^{o}}=\dfrac{\cot {{44}^{o}}\cot {{16}^{o}}-1}{\cot {{44}^{o}}+\cot {{16}^{o}}} \\
\end{align}$
Now, putting value of $\cot {{60}^{o}}$ as $\dfrac{1}{\sqrt{3}}$ and then cross multiplying the above equation, we get
$\begin{align}
& \dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{16}^{o}} \right)=\cot {{44}^{o}}\cot {{16}^{o}}-1 \\
& \Rightarrow \cot {{44}^{o}}\cot {{16}^{o}}=1+\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{16}^{o}} \right)............(iv) \\
\end{align}$
Similarly put $A={{44}^{o}}$ and $B={{76}^{o}}$ in equation (ii) to get value of $\cot {{44}^{o}}\cot {{76}^{o}}$. So, we get
$\begin{align}
& \cot \left( {{44}^{o}}+{{76}^{o}} \right)=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\
& \cot {{120}^{o}}=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\
\end{align}$
Now, we can use the identity $\cot \left( 180-\theta \right)=-\cot \theta $ with $\cot {{120}^{o}}$. Hence, we get
$\begin{align}
& \cot \left( {{180}^{o}}-{{60}^{o}} \right)=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\
& -\cot {{60}^{o}}=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\
\end{align}$
Now, put the value of $\cot {{60}^{o}}$as $\dfrac{1}{\sqrt{3}}$and cross-multiply the equation. Hence, we get
$\begin{align}
& -\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{76}^{o}} \right)=\cot {{44}^{o}}\cot {{76}^{o}}-1 \\
& \Rightarrow \cot {{44}^{o}}\cot {{76}^{o}}=\dfrac{-1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{76}^{o}} \right)+1...........(v) \\
\end{align}$
And now, put $A={{76}^{o}}$ and $B={{16}^{0}}$in the equation (iii) to get the value of $\cot {{76}^{o}}\cot {{16}^{o}}$. Hence, we get
$\begin{align}
& \cot \left( {{76}^{o}}-{{16}^{o}} \right)=\dfrac{\cot {{76}^{o}}\cot {{16}^{o}}+1}{\cot {{16}^{o}}-\cot {{76}^{o}}} \\
& \cot {{60}^{o}}=\dfrac{\cot {{76}^{o}}\cot {{16}^{o}}+1}{\cot {{16}^{o}}-\cot {{76}^{o}}} \\
\end{align}$
Now, put value of $\cot {{60}^{o}}$ and cross-multiply the above equation, hence, we get
$\begin{align}
& \dfrac{1}{\sqrt{3}}\left( \cot {{16}^{o}}-\cot {{76}^{o}} \right)=\cot 76\cot {{16}^{o}}+1 \\
& \Rightarrow \cot {{76}^{o}}\cot {{16}^{o}}=\dfrac{1}{\sqrt{3}}\left( \cot {{16}^{o}}-\cot {{76}^{o}} \right)-1............(vi) \\
\end{align}$
Now, put the values of $\cot {{44}^{o}}\cot {{16}^{o}},\cot {{44}^{o}}\cot {{76}^{o}}$ and $\cot {{76}^{o}}\cot {{16}^{o}}$from the equation (iv), (v), (vi) respectively in the equation (i). hence, we get
$\begin{align}
& M=1+\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{16}^{o}} \right)-\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{76}^{o}} \right)+1-\left( \dfrac{1}{\sqrt{3}}\left( \cot {{16}^{o}}-\cot {{76}^{o}} \right)-1 \right) \\
& M=1+\dfrac{1}{\sqrt{3}}\cot {{44}^{o}}+\dfrac{1}{\sqrt{3}}\cot {{16}^{o}}-\dfrac{1}{\sqrt{3}}\cot {{44}^{o}}-\dfrac{1}{\sqrt{3}}\cot {{76}^{o}}+1-\dfrac{1}{\sqrt{3}}\cot {{16}^{o}}+\dfrac{1}{\sqrt{3}}\cot {{76}^{o}}+1 \\
\end{align}$
Cancelling the like terms, we get
M = 1+1+1
So, value of $\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}}$ is 3.
Note: One may think why we did not calculate the value of all the terms in M with a single identity of $\cot \left( A-B \right)$ or $\cot \left( A+B \right)$. We need to observe that, we know the value of $\cot {{60}^{o}}$or $\cot {{120}^{o}}$.
That’s why we split the terms with the required identities.
Another approach for the given question would be that we can put $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and get expression as
$\begin{align}
& \dfrac{\cos {{16}^{o}}\cos {{44}^{o}}}{\sin {{16}^{o}}\sin {{44}^{o}}}+\dfrac{\cos {{44}^{o}}\cos {{76}^{o}}}{\sin {{44}^{o}}\sin {{76}^{0}}}-\dfrac{\cos {{76}^{o}}\cos {{16}^{o}}}{\sin {{76}^{o}}\sin {{16}^{o}}} \\
& =\dfrac{\cos {{16}^{o}}\cos {{44}^{o}}\sin {{76}^{o}}+\cos {{44}^{o}}\cos {{76}^{o}}\sin {{16}^{o}}+\cos {{76}^{o}}\cos {{16}^{o}}\sin {{44}^{o}}}{\sin {{16}^{o}}\sin {{44}^{o}}\sin {{76}^{o}}} \\
\end{align}$
Now multiply by 2 in numerator and denominator and use formula of, $2\cos A\cos B$, in numerator and simplify the denominator by identity
$\sin x\sin \left( {{60}^{o}}-x \right)\sin \left( {{60}^{o}}+x \right)=\dfrac{1}{4}\sin 3x$
Where put $x={{16}^{o}}$, you will get the denominator.
Simplify now to get an answer.
Complete step-by-step answer:
The given expression is $\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}}=?$
Let us suppose the value of given expression be M. Hence, we can write
$M=\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}}$ ………………… (i)
We know the identities of $\cot \left( A+B \right)$ and $\cot \left( A-B \right)$ can be given as
$\cot \left( A+B \right)=\dfrac{\cot A\cot B-1}{\operatorname{cotB}+cotA}$ ………………… (ii)
$\cot \left( A-B \right)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$…………………(iii)
Now, we can observe the equation (i) and get that the sum of angles of first two expressions are ${{60}^{o}}$ and ${{120}^{o}}$ respectively and difference of angles of last expression $\left( \cot {{76}^{0}}\cot {{16}^{o}} \right)$ is ${{60}^{o}}$.
Hence, we can get value of $cot {{16}^{o}}cot {{44}^{o}}$ from equation (ii) by substituting $A={{16}^{o}}$ and $B={{44}^{o}}$. Hence, we get
$\begin{align}
& \cot \left( {{44}^{o}}+{{16}^{o}} \right)=\dfrac{\cot {{44}^{o}}\cot {{16}^{o}}-1}{\cot {{44}^{o}}+\cot {{16}^{o}}} \\
& \cot {{60}^{o}}=\dfrac{\cot {{44}^{o}}\cot {{16}^{o}}-1}{\cot {{44}^{o}}+\cot {{16}^{o}}} \\
\end{align}$
Now, putting value of $\cot {{60}^{o}}$ as $\dfrac{1}{\sqrt{3}}$ and then cross multiplying the above equation, we get
$\begin{align}
& \dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{16}^{o}} \right)=\cot {{44}^{o}}\cot {{16}^{o}}-1 \\
& \Rightarrow \cot {{44}^{o}}\cot {{16}^{o}}=1+\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{16}^{o}} \right)............(iv) \\
\end{align}$
Similarly put $A={{44}^{o}}$ and $B={{76}^{o}}$ in equation (ii) to get value of $\cot {{44}^{o}}\cot {{76}^{o}}$. So, we get
$\begin{align}
& \cot \left( {{44}^{o}}+{{76}^{o}} \right)=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\
& \cot {{120}^{o}}=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\
\end{align}$
Now, we can use the identity $\cot \left( 180-\theta \right)=-\cot \theta $ with $\cot {{120}^{o}}$. Hence, we get
$\begin{align}
& \cot \left( {{180}^{o}}-{{60}^{o}} \right)=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\
& -\cot {{60}^{o}}=\dfrac{\cot {{44}^{o}}\cot {{76}^{o}}-1}{\cot {{44}^{o}}+\cot {{76}^{o}}} \\
\end{align}$
Now, put the value of $\cot {{60}^{o}}$as $\dfrac{1}{\sqrt{3}}$and cross-multiply the equation. Hence, we get
$\begin{align}
& -\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{76}^{o}} \right)=\cot {{44}^{o}}\cot {{76}^{o}}-1 \\
& \Rightarrow \cot {{44}^{o}}\cot {{76}^{o}}=\dfrac{-1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{76}^{o}} \right)+1...........(v) \\
\end{align}$
And now, put $A={{76}^{o}}$ and $B={{16}^{0}}$in the equation (iii) to get the value of $\cot {{76}^{o}}\cot {{16}^{o}}$. Hence, we get
$\begin{align}
& \cot \left( {{76}^{o}}-{{16}^{o}} \right)=\dfrac{\cot {{76}^{o}}\cot {{16}^{o}}+1}{\cot {{16}^{o}}-\cot {{76}^{o}}} \\
& \cot {{60}^{o}}=\dfrac{\cot {{76}^{o}}\cot {{16}^{o}}+1}{\cot {{16}^{o}}-\cot {{76}^{o}}} \\
\end{align}$
Now, put value of $\cot {{60}^{o}}$ and cross-multiply the above equation, hence, we get
$\begin{align}
& \dfrac{1}{\sqrt{3}}\left( \cot {{16}^{o}}-\cot {{76}^{o}} \right)=\cot 76\cot {{16}^{o}}+1 \\
& \Rightarrow \cot {{76}^{o}}\cot {{16}^{o}}=\dfrac{1}{\sqrt{3}}\left( \cot {{16}^{o}}-\cot {{76}^{o}} \right)-1............(vi) \\
\end{align}$
Now, put the values of $\cot {{44}^{o}}\cot {{16}^{o}},\cot {{44}^{o}}\cot {{76}^{o}}$ and $\cot {{76}^{o}}\cot {{16}^{o}}$from the equation (iv), (v), (vi) respectively in the equation (i). hence, we get
$\begin{align}
& M=1+\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{16}^{o}} \right)-\dfrac{1}{\sqrt{3}}\left( \cot {{44}^{o}}+\cot {{76}^{o}} \right)+1-\left( \dfrac{1}{\sqrt{3}}\left( \cot {{16}^{o}}-\cot {{76}^{o}} \right)-1 \right) \\
& M=1+\dfrac{1}{\sqrt{3}}\cot {{44}^{o}}+\dfrac{1}{\sqrt{3}}\cot {{16}^{o}}-\dfrac{1}{\sqrt{3}}\cot {{44}^{o}}-\dfrac{1}{\sqrt{3}}\cot {{76}^{o}}+1-\dfrac{1}{\sqrt{3}}\cot {{16}^{o}}+\dfrac{1}{\sqrt{3}}\cot {{76}^{o}}+1 \\
\end{align}$
Cancelling the like terms, we get
M = 1+1+1
So, value of $\cot {{16}^{o}}\cot {{44}^{o}}+\cot {{44}^{o}}\cot {{76}^{o}}-\cot {{76}^{o}}\cot {{16}^{o}}$ is 3.
Note: One may think why we did not calculate the value of all the terms in M with a single identity of $\cot \left( A-B \right)$ or $\cot \left( A+B \right)$. We need to observe that, we know the value of $\cot {{60}^{o}}$or $\cot {{120}^{o}}$.
That’s why we split the terms with the required identities.
Another approach for the given question would be that we can put $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ and get expression as
$\begin{align}
& \dfrac{\cos {{16}^{o}}\cos {{44}^{o}}}{\sin {{16}^{o}}\sin {{44}^{o}}}+\dfrac{\cos {{44}^{o}}\cos {{76}^{o}}}{\sin {{44}^{o}}\sin {{76}^{0}}}-\dfrac{\cos {{76}^{o}}\cos {{16}^{o}}}{\sin {{76}^{o}}\sin {{16}^{o}}} \\
& =\dfrac{\cos {{16}^{o}}\cos {{44}^{o}}\sin {{76}^{o}}+\cos {{44}^{o}}\cos {{76}^{o}}\sin {{16}^{o}}+\cos {{76}^{o}}\cos {{16}^{o}}\sin {{44}^{o}}}{\sin {{16}^{o}}\sin {{44}^{o}}\sin {{76}^{o}}} \\
\end{align}$
Now multiply by 2 in numerator and denominator and use formula of, $2\cos A\cos B$, in numerator and simplify the denominator by identity
$\sin x\sin \left( {{60}^{o}}-x \right)\sin \left( {{60}^{o}}+x \right)=\dfrac{1}{4}\sin 3x$
Where put $x={{16}^{o}}$, you will get the denominator.
Simplify now to get an answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

