
Find the value of $ \mathop {\lim }\limits_{x \to 0} \dfrac{{{3^{2 + x}} - 9}}{x} $ .
A) $ \log {}_e3 $
B) $ 9\log {}_e3 $
C) $ 9\log {}_3e $
D) $ 3\log {}_3e $
Answer
587.7k+ views
Hint: Here when we directly substitute the limit value x=0, we get 0/0 which is not defined. So we have to use L’hospital’s Rule to solve the above limit. L'Hospital's Rule states that if we have an indeterminate form 0/0, all we need to do is differentiate the numerator and the denominator and then take the limit.
Complete step-by-step answer:
We are given to find the value of $ \mathop {\lim }\limits_{x \to 0} \dfrac{{{3^{2 + x}} - 9}}{x} $
Here the limit of x tends to zero.
By direct substitution, substitute the value x=0 in the limit as it tends to the value zero.
$
\mathop {\lim }\limits_{x \to 0} \dfrac{{{3^{2 + x}} - 9}}{x} \\
x = 0 \\
= \dfrac{{{3^{2 + 0}} - 9}}{0} \\
= \dfrac{{9 - 9}}{0} \\
= \dfrac{0}{0} \\
$
The value of 0/0 is undefined. So use L’Hospital’s rule to solve the limit.
L’Hospital’s Rule states that If $ \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0} $ then $ \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]}}{{\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right]}} $
$
f\left( x \right) = {3^{2 + x}} - 9 \\
\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = \dfrac{d}{{dx}}\left( {{3^{2 + x}} - 9} \right) \\
= \dfrac{d}{{dx}}\left( {{3^{2 + x}}} \right) - \dfrac{d}{{dx}}\left( 9 \right) \\
= {\log _e}3\left( {{3^{2 + x}}} \right) - 0 \\
$
Differentiation of a constant is zero.
Differentiation of
$
{a^x} = \ln a\left( {{a^x}} \right) \\
\ln a = {\log _e}a \\
\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = {\log _e}3\left( {{3^{2 + x}}} \right) \\
g\left( x \right) = x \\
\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = \dfrac{d}{{dx}}\left( x \right) \\
\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = 1 \\
\mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\log }_e}3\left( {{3^{2 + x}}} \right)}}{1} = \mathop {\lim }\limits_{x \to 0} {\log _e}3\left( {{3^{2 + x}}} \right) \\
\mathop {\lim }\limits_{x \to 0} {\log _e}3\left( {{3^{2 + x}}} \right) = {\log _e}3\left( {{3^{2 + 0}}} \right) \\
= {\log _e}3\left( {{3^2}} \right) \\
= 9{\log _e}3 \\
$
Therefore, the value of $ \mathop {\lim }\limits_{x \to 0} \dfrac{{{3^{2 + x}} - 9}}{x} $ is $ 9{\log _e}3 $
So, the correct answer is “Option B”.
Note: A limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, derivatives and integrals. The limit of a constant function is equal to the constant. Limits follow distributive property in addition and subtraction. Do not use L’Hospital’s Rule when you have a determinable form of limit.
Complete step-by-step answer:
We are given to find the value of $ \mathop {\lim }\limits_{x \to 0} \dfrac{{{3^{2 + x}} - 9}}{x} $
Here the limit of x tends to zero.
By direct substitution, substitute the value x=0 in the limit as it tends to the value zero.
$
\mathop {\lim }\limits_{x \to 0} \dfrac{{{3^{2 + x}} - 9}}{x} \\
x = 0 \\
= \dfrac{{{3^{2 + 0}} - 9}}{0} \\
= \dfrac{{9 - 9}}{0} \\
= \dfrac{0}{0} \\
$
The value of 0/0 is undefined. So use L’Hospital’s rule to solve the limit.
L’Hospital’s Rule states that If $ \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{0}{0} $ then $ \mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \dfrac{{\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right]}}{{\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right]}} $
$
f\left( x \right) = {3^{2 + x}} - 9 \\
\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = \dfrac{d}{{dx}}\left( {{3^{2 + x}} - 9} \right) \\
= \dfrac{d}{{dx}}\left( {{3^{2 + x}}} \right) - \dfrac{d}{{dx}}\left( 9 \right) \\
= {\log _e}3\left( {{3^{2 + x}}} \right) - 0 \\
$
Differentiation of a constant is zero.
Differentiation of
$
{a^x} = \ln a\left( {{a^x}} \right) \\
\ln a = {\log _e}a \\
\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = {\log _e}3\left( {{3^{2 + x}}} \right) \\
g\left( x \right) = x \\
\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = \dfrac{d}{{dx}}\left( x \right) \\
\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] = 1 \\
\mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\log }_e}3\left( {{3^{2 + x}}} \right)}}{1} = \mathop {\lim }\limits_{x \to 0} {\log _e}3\left( {{3^{2 + x}}} \right) \\
\mathop {\lim }\limits_{x \to 0} {\log _e}3\left( {{3^{2 + x}}} \right) = {\log _e}3\left( {{3^{2 + 0}}} \right) \\
= {\log _e}3\left( {{3^2}} \right) \\
= 9{\log _e}3 \\
$
Therefore, the value of $ \mathop {\lim }\limits_{x \to 0} \dfrac{{{3^{2 + x}} - 9}}{x} $ is $ 9{\log _e}3 $
So, the correct answer is “Option B”.
Note: A limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, derivatives and integrals. The limit of a constant function is equal to the constant. Limits follow distributive property in addition and subtraction. Do not use L’Hospital’s Rule when you have a determinable form of limit.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

