
Find the value of $\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}$.
A. $1$
B. $ - 1$
C. $\dfrac{1}{2}$
D. $ - \dfrac{1}{2}$
Answer
509.4k+ views
Hint: The given question requires us to evaluate a limit. A limit is the value that a function (or sequence) approaches as the input (or index) approaches some value. There are various methods and steps to evaluate a limit. Some of the common steps while solving limits involve rationalization and applying some basic results on frequently used limits. L’Hospital’s rule involves solving limits of indeterminate form by differentiating both numerator and denominator with respect to the variable separately and then applying the required limit.
Complete step by step answer:
We have to evaluate limit $\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}$ using L’Hospital’s rule. So, if we put the limit x tending to $\left( {\dfrac{\pi }{2}} \right)$ into the expression $\dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}$, we get an indeterminate form limit. Hence, L’Hospital’s rule can be applied here to find the value of the concerned limit.
So, Applying L’Hospital’s rule, we have to differentiate both numerator and denominator with respect to the variable $\theta $ separately and then apply the limit.
Hence, $\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}$
Now, the derivative of $\sin \theta $ is $\cos \theta $ and the derivative of $\cos \theta $ is $\sin \theta $ . Also, we must know the product rule of differentiation $\dfrac{{d\left[ {f\left( x \right) \times g\left( x \right)} \right]}}{{dx}} = f\left( x \right)g'\left( x \right) + g\left( x \right)f'\left( x \right)$ to find derivative of the denominator. So, we get,
$\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{ - \cos \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\left( { - \sin \theta } \right) + \cos \theta \left( { - 1} \right)}}$
Now, simplifying the expression, we get,
$\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{ - \cos \theta }}{{\left( {\theta - \dfrac{\pi }{2}} \right)\sin \theta - \cos \theta }}$
But still if we substitute the limit x tending to $\left( {\dfrac{\pi }{2}} \right)$ into the expression $\dfrac{{ - \cos \theta }}{{\left( {\theta - \dfrac{\pi }{2}} \right)\sin \theta - \cos \theta }}$, we get an indeterminate form limit. So, we apply the L’Hospital’s rule one more time. Differentiating the numerator and denominator with respect to $\theta $, we get,
$\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{ - \left( { - \sin \theta } \right)}}{{\left( {\theta - \dfrac{\pi }{2}} \right)\left( {\cos \theta } \right) + \sin \theta \left( 1 \right) - \left( { - \sin \theta } \right)}}$
Simplifying the expression, we get,
$\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{\sin \theta }}{{\left( {\theta - \dfrac{\pi }{2}} \right)\left( {\cos \theta } \right) + 2\sin \theta }}$
Now substituting the value of limit x tending to $\left( {\dfrac{\pi }{2}} \right)$ into the expression, we get,
$\dfrac{{\sin \left( {\dfrac{\pi }{2}} \right)}}{{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{2}} \right) + 2\sin \left( {\dfrac{\pi }{2}} \right)}}$
Now, we know that the value of $\sin \dfrac{\pi }{2}$ is $1$ and $\cos \dfrac{\pi }{2}$ is $0$. So, we get,
$\dfrac{1}{{0 \times 0 + 2\left( 1 \right)}}$
$\therefore \dfrac{1}{2}$
So, the value of the limit $\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}$ is $\left( {\dfrac{1}{2}} \right)$.
Hence, option C is the correct answer.
Note: Always check before evaluating the problem whether it is of indeterminate or determinate form. Remember the L’Hospital’s rule for evaluating the indeterminate forms. If the limit is of determinate form, then we can substitute the value of limit directly into the expression and get to the final answer. If the limit is of indeterminate form, we use the L’Hospital rule to convert it into determinate form and then substitute the limit.
Complete step by step answer:
We have to evaluate limit $\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}$ using L’Hospital’s rule. So, if we put the limit x tending to $\left( {\dfrac{\pi }{2}} \right)$ into the expression $\dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}$, we get an indeterminate form limit. Hence, L’Hospital’s rule can be applied here to find the value of the concerned limit.
So, Applying L’Hospital’s rule, we have to differentiate both numerator and denominator with respect to the variable $\theta $ separately and then apply the limit.
Hence, $\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}$
Now, the derivative of $\sin \theta $ is $\cos \theta $ and the derivative of $\cos \theta $ is $\sin \theta $ . Also, we must know the product rule of differentiation $\dfrac{{d\left[ {f\left( x \right) \times g\left( x \right)} \right]}}{{dx}} = f\left( x \right)g'\left( x \right) + g\left( x \right)f'\left( x \right)$ to find derivative of the denominator. So, we get,
$\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{ - \cos \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\left( { - \sin \theta } \right) + \cos \theta \left( { - 1} \right)}}$
Now, simplifying the expression, we get,
$\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{ - \cos \theta }}{{\left( {\theta - \dfrac{\pi }{2}} \right)\sin \theta - \cos \theta }}$
But still if we substitute the limit x tending to $\left( {\dfrac{\pi }{2}} \right)$ into the expression $\dfrac{{ - \cos \theta }}{{\left( {\theta - \dfrac{\pi }{2}} \right)\sin \theta - \cos \theta }}$, we get an indeterminate form limit. So, we apply the L’Hospital’s rule one more time. Differentiating the numerator and denominator with respect to $\theta $, we get,
$\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{ - \left( { - \sin \theta } \right)}}{{\left( {\theta - \dfrac{\pi }{2}} \right)\left( {\cos \theta } \right) + \sin \theta \left( 1 \right) - \left( { - \sin \theta } \right)}}$
Simplifying the expression, we get,
$\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{\sin \theta }}{{\left( {\theta - \dfrac{\pi }{2}} \right)\left( {\cos \theta } \right) + 2\sin \theta }}$
Now substituting the value of limit x tending to $\left( {\dfrac{\pi }{2}} \right)$ into the expression, we get,
$\dfrac{{\sin \left( {\dfrac{\pi }{2}} \right)}}{{\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{2}} \right) + 2\sin \left( {\dfrac{\pi }{2}} \right)}}$
Now, we know that the value of $\sin \dfrac{\pi }{2}$ is $1$ and $\cos \dfrac{\pi }{2}$ is $0$. So, we get,
$\dfrac{1}{{0 \times 0 + 2\left( 1 \right)}}$
$\therefore \dfrac{1}{2}$
So, the value of the limit $\mathop {\lim }\limits_{\theta \to \dfrac{\pi }{2}} \dfrac{{1 - \sin \theta }}{{\left( {\dfrac{\pi }{2} - \theta } \right)\cos \theta }}$ is $\left( {\dfrac{1}{2}} \right)$.
Hence, option C is the correct answer.
Note: Always check before evaluating the problem whether it is of indeterminate or determinate form. Remember the L’Hospital’s rule for evaluating the indeterminate forms. If the limit is of determinate form, then we can substitute the value of limit directly into the expression and get to the final answer. If the limit is of indeterminate form, we use the L’Hospital rule to convert it into determinate form and then substitute the limit.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

