
Find the value of m for which ${{\rm{z}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{z}}^2} - 3{\rm{z}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$ where ${\rm{m}} \in {\rm{R}}$ has at least one real root.
A) 1
B) 2
C) 3
D) 5
Answer
567.3k+ views
Hint:
We suppose let a be real root then replace z with a, then take conjugate of the equation in terms of a. Solve both equations to find a and by using value of a, find m.
Complete step by step solution:
${{\rm{z}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{z}}^2} - 3{\rm{z}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$---------(1)
Let ‘a’ be the real root.
$ \Rightarrow {\rm{z}} = {\rm{a}}$
${{\rm{a}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$---------(2)
(since, a is the root of the equation 1)
Conjugating eq (2) we get.
${{\rm{\bar a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{\bar a}}^2} - 3{\rm{\bar a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0$
$ \Rightarrow {{\rm{a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0$----------(3)
Subtracting eq (2) and eq .3 we get
${{\rm{a}}^2}\left( {2{\rm{i}}} \right) = 2{\rm{i}}$
${\rm{a}} = \pm 1$ (4)
Multiplying eq 2 by (3 - i) and eq 3 by (3 + i) and then subtracting we get
$\left( {{{\rm{a}}^3} - 3{\rm{a}}} \right)\left( {3 - {\rm{i}} - 3 - {\rm{i}}} \right) = \left( {3 - {\rm{i}}} \right)\left( {{\rm{m}} + {\rm{i}}} \right) - \left( {3 + {\rm{i}}} \right)\left( {{\rm{m}} - {\rm{i}}} \right)$
$ \Rightarrow {{\rm{a}}^3} - 3{\rm{a}} = {\rm{m}} - 3$
$ \Rightarrow 1 - 3 = {\rm{m}} - 3$ (when a =1)
$ \Rightarrow {\rm{m}} = 1$
$ \Rightarrow - 1 + 3 = {\rm{m}} - 3$ (when a = -1)
$ \Rightarrow {\rm{m}} = 5$
So, m = 1, 5
So, from above option both A and D is correct.
Note:
Don’t miss any equation which we have taken. To remove i multiply the equation in terms of a with (3 - i) and its conjugate equation with (3 + i). then subtract both equations. Find all the value of m by putting a = 1 and a = -1.
We suppose let a be real root then replace z with a, then take conjugate of the equation in terms of a. Solve both equations to find a and by using value of a, find m.
Complete step by step solution:
${{\rm{z}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{z}}^2} - 3{\rm{z}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$---------(1)
Let ‘a’ be the real root.
$ \Rightarrow {\rm{z}} = {\rm{a}}$
${{\rm{a}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$---------(2)
(since, a is the root of the equation 1)
Conjugating eq (2) we get.
${{\rm{\bar a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{\bar a}}^2} - 3{\rm{\bar a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0$
$ \Rightarrow {{\rm{a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0$----------(3)
Subtracting eq (2) and eq .3 we get
${{\rm{a}}^2}\left( {2{\rm{i}}} \right) = 2{\rm{i}}$
${\rm{a}} = \pm 1$ (4)
Multiplying eq 2 by (3 - i) and eq 3 by (3 + i) and then subtracting we get
$\left( {{{\rm{a}}^3} - 3{\rm{a}}} \right)\left( {3 - {\rm{i}} - 3 - {\rm{i}}} \right) = \left( {3 - {\rm{i}}} \right)\left( {{\rm{m}} + {\rm{i}}} \right) - \left( {3 + {\rm{i}}} \right)\left( {{\rm{m}} - {\rm{i}}} \right)$
$ \Rightarrow {{\rm{a}}^3} - 3{\rm{a}} = {\rm{m}} - 3$
$ \Rightarrow 1 - 3 = {\rm{m}} - 3$ (when a =1)
$ \Rightarrow {\rm{m}} = 1$
$ \Rightarrow - 1 + 3 = {\rm{m}} - 3$ (when a = -1)
$ \Rightarrow {\rm{m}} = 5$
So, m = 1, 5
So, from above option both A and D is correct.
Note:
Don’t miss any equation which we have taken. To remove i multiply the equation in terms of a with (3 - i) and its conjugate equation with (3 + i). then subtract both equations. Find all the value of m by putting a = 1 and a = -1.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

