
Find the value of m for which ${{\rm{z}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{z}}^2} - 3{\rm{z}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$ where ${\rm{m}} \in {\rm{R}}$ has at least one real root.
A) 1
B) 2
C) 3
D) 5
Answer
552.9k+ views
Hint:
We suppose let a be real root then replace z with a, then take conjugate of the equation in terms of a. Solve both equations to find a and by using value of a, find m.
Complete step by step solution:
${{\rm{z}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{z}}^2} - 3{\rm{z}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$---------(1)
Let ‘a’ be the real root.
$ \Rightarrow {\rm{z}} = {\rm{a}}$
${{\rm{a}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$---------(2)
(since, a is the root of the equation 1)
Conjugating eq (2) we get.
${{\rm{\bar a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{\bar a}}^2} - 3{\rm{\bar a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0$
$ \Rightarrow {{\rm{a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0$----------(3)
Subtracting eq (2) and eq .3 we get
${{\rm{a}}^2}\left( {2{\rm{i}}} \right) = 2{\rm{i}}$
${\rm{a}} = \pm 1$ (4)
Multiplying eq 2 by (3 - i) and eq 3 by (3 + i) and then subtracting we get
$\left( {{{\rm{a}}^3} - 3{\rm{a}}} \right)\left( {3 - {\rm{i}} - 3 - {\rm{i}}} \right) = \left( {3 - {\rm{i}}} \right)\left( {{\rm{m}} + {\rm{i}}} \right) - \left( {3 + {\rm{i}}} \right)\left( {{\rm{m}} - {\rm{i}}} \right)$
$ \Rightarrow {{\rm{a}}^3} - 3{\rm{a}} = {\rm{m}} - 3$
$ \Rightarrow 1 - 3 = {\rm{m}} - 3$ (when a =1)
$ \Rightarrow {\rm{m}} = 1$
$ \Rightarrow - 1 + 3 = {\rm{m}} - 3$ (when a = -1)
$ \Rightarrow {\rm{m}} = 5$
So, m = 1, 5
So, from above option both A and D is correct.
Note:
Don’t miss any equation which we have taken. To remove i multiply the equation in terms of a with (3 - i) and its conjugate equation with (3 + i). then subtract both equations. Find all the value of m by putting a = 1 and a = -1.
We suppose let a be real root then replace z with a, then take conjugate of the equation in terms of a. Solve both equations to find a and by using value of a, find m.
Complete step by step solution:
${{\rm{z}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{z}}^2} - 3{\rm{z}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$---------(1)
Let ‘a’ be the real root.
$ \Rightarrow {\rm{z}} = {\rm{a}}$
${{\rm{a}}^3} + \left( {3 + {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} + {\rm{i}}} \right) = 0$---------(2)
(since, a is the root of the equation 1)
Conjugating eq (2) we get.
${{\rm{\bar a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{\bar a}}^2} - 3{\rm{\bar a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0$
$ \Rightarrow {{\rm{a}}^3} + \left( {3 - {\rm{i}}} \right){{\rm{a}}^2} - 3{\rm{a}} - \left( {{\rm{m}} - {\rm{i}}} \right) = 0$----------(3)
Subtracting eq (2) and eq .3 we get
${{\rm{a}}^2}\left( {2{\rm{i}}} \right) = 2{\rm{i}}$
${\rm{a}} = \pm 1$ (4)
Multiplying eq 2 by (3 - i) and eq 3 by (3 + i) and then subtracting we get
$\left( {{{\rm{a}}^3} - 3{\rm{a}}} \right)\left( {3 - {\rm{i}} - 3 - {\rm{i}}} \right) = \left( {3 - {\rm{i}}} \right)\left( {{\rm{m}} + {\rm{i}}} \right) - \left( {3 + {\rm{i}}} \right)\left( {{\rm{m}} - {\rm{i}}} \right)$
$ \Rightarrow {{\rm{a}}^3} - 3{\rm{a}} = {\rm{m}} - 3$
$ \Rightarrow 1 - 3 = {\rm{m}} - 3$ (when a =1)
$ \Rightarrow {\rm{m}} = 1$
$ \Rightarrow - 1 + 3 = {\rm{m}} - 3$ (when a = -1)
$ \Rightarrow {\rm{m}} = 5$
So, m = 1, 5
So, from above option both A and D is correct.
Note:
Don’t miss any equation which we have taken. To remove i multiply the equation in terms of a with (3 - i) and its conjugate equation with (3 + i). then subtract both equations. Find all the value of m by putting a = 1 and a = -1.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

