
Find the value of ${{\log }_{1}}1$.
Answer
605.1k+ views
- Hint:First we should understand the term ‘logarithm’ and then we will see the property of logarithm required to solve this question. Remember the domains in which the value of a logarithmic function is defined.
Complete step-by-step solution -
In mathematics, the logarithm is the inverse function of exponentiation. That means that the logarithm of a given number ‘n’ is the exponent to which another fixed number the base ‘b’ must be raised, to produce that number ‘n’. Common logarithm has base 10, however we can convert it to any number. Let us take an example: consider a number, here I am using 100, so, 100 can be written as 10 raised to the power 2 or mathematically, ${{10}^{2}}$. Now, we have to find the logarithmic value of 100 with 10 as considering the base of the logarithm. In other words, we can interpret the question as ‘to how much must be the power of 10 should be raised, so that it becomes equal to 100’. We know that 10 raised to power 2 is equal to 100, so the answer is 2. Mathematically, it can be written as ${{\log }_{10}}100=2$. Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
${{\log }_{n}}m=\dfrac{\ln m}{\ln n}$
It is important to note that logarithmic function is not defined for negative values of base and base 1. ${{1}^{n}}=1$ has infinite solutions from which we can pick any value to be its solution. Thus, we can see that logarithm is not well defined for base 1.
${{\log }_{1}}1$ can be written as $\dfrac{\ln 1}{\ln 1}$, using change of Base rule, which is of the form $\dfrac{0}{0}$, and hence it is indeterminate. In this way also we can prove that ${{\log }_{1}}1$ is an undefined function.
Note: One may get confused that the value of log 1 is 0, but you have to remember the domain in which the logarithmic function is defined. Logarithmic function is defined for all the values of base except 1 and negative values, so for ${{\log }_{a}}b$ to be defined ‘a’ must be greater than 0 and unequal to 1 and also, b must be greater than 0. Hence, the value of ${{\log }_{1}}1$ cannot be 0 and is undefined.
Complete step-by-step solution -
In mathematics, the logarithm is the inverse function of exponentiation. That means that the logarithm of a given number ‘n’ is the exponent to which another fixed number the base ‘b’ must be raised, to produce that number ‘n’. Common logarithm has base 10, however we can convert it to any number. Let us take an example: consider a number, here I am using 100, so, 100 can be written as 10 raised to the power 2 or mathematically, ${{10}^{2}}$. Now, we have to find the logarithmic value of 100 with 10 as considering the base of the logarithm. In other words, we can interpret the question as ‘to how much must be the power of 10 should be raised, so that it becomes equal to 100’. We know that 10 raised to power 2 is equal to 100, so the answer is 2. Mathematically, it can be written as ${{\log }_{10}}100=2$. Some important formulas for logarithms are:
$\begin{align}
& {{\log }_{m}}{{n}^{a}}=a{{\log }_{m}}n,\text{ } \\
& {{\log }_{a}}\left( m\times n \right)={{\log }_{a}}m+{{\log }_{a}}n\text{ } \\
& \text{lo}{{\text{g}}_{a}}\left( \dfrac{m}{n} \right)={{\log }_{a}}m-{{\log }_{a}}n \\
& {{\log }_{{{a}^{b}}}}m=\dfrac{1}{b}{{\log }_{a}}m \\
\end{align}$
${{\log }_{n}}m=\dfrac{\ln m}{\ln n}$
It is important to note that logarithmic function is not defined for negative values of base and base 1. ${{1}^{n}}=1$ has infinite solutions from which we can pick any value to be its solution. Thus, we can see that logarithm is not well defined for base 1.
${{\log }_{1}}1$ can be written as $\dfrac{\ln 1}{\ln 1}$, using change of Base rule, which is of the form $\dfrac{0}{0}$, and hence it is indeterminate. In this way also we can prove that ${{\log }_{1}}1$ is an undefined function.
Note: One may get confused that the value of log 1 is 0, but you have to remember the domain in which the logarithmic function is defined. Logarithmic function is defined for all the values of base except 1 and negative values, so for ${{\log }_{a}}b$ to be defined ‘a’ must be greater than 0 and unequal to 1 and also, b must be greater than 0. Hence, the value of ${{\log }_{1}}1$ cannot be 0 and is undefined.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

