
Find the value of \[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}\]
Answer
569.7k+ views
Hint: Here, use the basic formula of the difference of two squares and the property of the splitting of the powers using the multiplicative identity. Also, use the fundamental of the squares and square roots which cancels each other.
Complete step-by-step answer:
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}\] ………….. (a)
Simplify using the formula the difference of two squares –
${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$
\[\begin{align}
\Rightarrow & {{\left( {{61}^{2}}-{{11}^{2}} \right)}^{{}}}=(61-11)(61+11) \\
\Rightarrow & \left( {{61}^{2}}-{{11}^{2}} \right)=(50)(72) \\
\Rightarrow & \left( {{61}^{2}}-{{11}^{2}} \right)=3600\,\text{ }..........\text{(b)} \\
\end{align}\](Simplify)
Place the value of equation (b) in the equation (a) –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{(3600)}^{\dfrac{3}{2}}}\] …………..(c)
Simplify, using the basic mathematical operations –
Split the power –
$\Rightarrow$ $\dfrac{3}{2}=\left( \dfrac{1}{2} \right)\times 3$
Place the above value in the equation (c) –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ {{(3600)}^{\dfrac{1}{2}}} \right]}^{3}}\]
Simplify the left hand side of the equation –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ {{({{60}^{2}})}^{\dfrac{1}{2}}} \right]}^{3}}\]
By the property – the squares and square-root cancels each other –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ (60) \right]}^{3}}\]
Now, simplify the left hand side of the equation and do the cubes of six and ten -
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}=216000\]
Therefore, the required solution is \[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}=216000\]
Note: The square root of the number “n” is the number when multiplied by the number itself and equals to “n”. For example, the square root of $\sqrt{9}=\sqrt{{{3}^{2}}}=3$. The squares and the square roots are opposite to each other and so cancel each other. Perfect square number is the square of an integer, simply it is the product of the same integer with itself. For example - $\text{16 = 4 }\times \text{ 4, 16=}{{\text{4}}^{2}}$, generally it is denoted by n to the power two i.e. ${{n}^{2}}$. The perfect square is the number which can be expressed as the product of the two equal integers. For example: $9$, it can be expressed as the product of equal integers. $9=3\times 3$. Cube is the number, we get when the number is multiplied three times. For example - ${{n}^{3}}=n\times n\times n$
${{3}^{3}}=3\times 3\times 3,\ \text{implies }{{3}^{3}}=27$
Complete step-by-step answer:
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}\] ………….. (a)
Simplify using the formula the difference of two squares –
${{a}^{2}}-{{b}^{2}}=(a-b)(a+b)$
\[\begin{align}
\Rightarrow & {{\left( {{61}^{2}}-{{11}^{2}} \right)}^{{}}}=(61-11)(61+11) \\
\Rightarrow & \left( {{61}^{2}}-{{11}^{2}} \right)=(50)(72) \\
\Rightarrow & \left( {{61}^{2}}-{{11}^{2}} \right)=3600\,\text{ }..........\text{(b)} \\
\end{align}\](Simplify)
Place the value of equation (b) in the equation (a) –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{(3600)}^{\dfrac{3}{2}}}\] …………..(c)
Simplify, using the basic mathematical operations –
Split the power –
$\Rightarrow$ $\dfrac{3}{2}=\left( \dfrac{1}{2} \right)\times 3$
Place the above value in the equation (c) –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ {{(3600)}^{\dfrac{1}{2}}} \right]}^{3}}\]
Simplify the left hand side of the equation –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ {{({{60}^{2}})}^{\dfrac{1}{2}}} \right]}^{3}}\]
By the property – the squares and square-root cancels each other –
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}={{\left[ (60) \right]}^{3}}\]
Now, simplify the left hand side of the equation and do the cubes of six and ten -
\[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}=216000\]
Therefore, the required solution is \[{{\left( {{61}^{2}}-{{11}^{2}} \right)}^{\dfrac{3}{2}}}=216000\]
Note: The square root of the number “n” is the number when multiplied by the number itself and equals to “n”. For example, the square root of $\sqrt{9}=\sqrt{{{3}^{2}}}=3$. The squares and the square roots are opposite to each other and so cancel each other. Perfect square number is the square of an integer, simply it is the product of the same integer with itself. For example - $\text{16 = 4 }\times \text{ 4, 16=}{{\text{4}}^{2}}$, generally it is denoted by n to the power two i.e. ${{n}^{2}}$. The perfect square is the number which can be expressed as the product of the two equal integers. For example: $9$, it can be expressed as the product of equal integers. $9=3\times 3$. Cube is the number, we get when the number is multiplied three times. For example - ${{n}^{3}}=n\times n\times n$
${{3}^{3}}=3\times 3\times 3,\ \text{implies }{{3}^{3}}=27$
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE


