
Find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\]
Answer
596.7k+ views
Hint: Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] as S. Now we have to find the value of S. Now we have to split the sum in to two parts. The first part shows numbers and the other part shows the expression of variable n. We know that the sum of n natural numbers is equal to \[\dfrac{n(n+1)}{2}\]. Now by using this formula, we can find the value of S.
Complete step by step answer:
From the question, it is given that we have to find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\].
Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to S.
\[\begin{align}
& \Rightarrow S=\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}....\text{(1)} \\
& \Rightarrow \text{S=(5+5+5+}.....\text{(100 terms))-}\left( \dfrac{2}{n}+\dfrac{4}{n}+\dfrac{6}{n}+.....(100\text{ terms)} \right) \\
& \Rightarrow S=5(100)-\left( \dfrac{2+4+6+....(100\text{ terms)}}{n} \right) \\
& \Rightarrow S=500-2\left( \dfrac{1+2+3+.....(100\text{ terms)}}{n} \right) \\
\end{align}\]
We know that the sum of n natural numbers is equal to \[\dfrac{n(n+1)}{2}\].
\[\Rightarrow S=500-2\left( \dfrac{\sum\limits_{n=1}^{100}{n}}{n} \right)\]
\[\Rightarrow S=500-2\left( \dfrac{\dfrac{100(100+1)}{2}}{n} \right)\]
\[\begin{align}
& \Rightarrow S=500-2\left( \dfrac{100(101)}{2(100)} \right) \\
& \Rightarrow S=500-2(101) \\
& \Rightarrow S=500-202 \\
& \Rightarrow S=298 \\
\end{align}\]
So, it is clear that the value of S is equal to 298.
So, the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to 298.
Note: This problem can be solved alternatively.
From the question, it is given that we have to find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\].
Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to S.
\[\begin{align}
& \Rightarrow S=\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}....\text{(1)} \\
& \Rightarrow \text{S=(5+5+5+}.....\text{(100 terms))-}\left( \dfrac{2}{n}+\dfrac{4}{n}+\dfrac{6}{n}+.....(100\text{ terms)} \right) \\
& \Rightarrow S=5(100)-\left( \dfrac{2+4+6+....(100\text{ terms)}}{n} \right) \\
\end{align}\]
We know that if the first term of the A.P is equal to a and common difference is equal to d, then the sum of numbers of A.P is equal to \[\dfrac{n}{2}[2a+(n-1)d]\].
\[\begin{align}
& \Rightarrow S=500-\left( \dfrac{\left( \dfrac{100}{2} \right)[2(2)+(100-1)(2)]}{100} \right) \\
& \Rightarrow S=500-\left( \dfrac{50[4+198]}{100} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow S=500-\left( \dfrac{50(202)}{100} \right) \\
& \Rightarrow S=399 \\
\end{align}\]
Complete step by step answer:
From the question, it is given that we have to find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\].
Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to S.
\[\begin{align}
& \Rightarrow S=\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}....\text{(1)} \\
& \Rightarrow \text{S=(5+5+5+}.....\text{(100 terms))-}\left( \dfrac{2}{n}+\dfrac{4}{n}+\dfrac{6}{n}+.....(100\text{ terms)} \right) \\
& \Rightarrow S=5(100)-\left( \dfrac{2+4+6+....(100\text{ terms)}}{n} \right) \\
& \Rightarrow S=500-2\left( \dfrac{1+2+3+.....(100\text{ terms)}}{n} \right) \\
\end{align}\]
We know that the sum of n natural numbers is equal to \[\dfrac{n(n+1)}{2}\].
\[\Rightarrow S=500-2\left( \dfrac{\sum\limits_{n=1}^{100}{n}}{n} \right)\]
\[\Rightarrow S=500-2\left( \dfrac{\dfrac{100(100+1)}{2}}{n} \right)\]
\[\begin{align}
& \Rightarrow S=500-2\left( \dfrac{100(101)}{2(100)} \right) \\
& \Rightarrow S=500-2(101) \\
& \Rightarrow S=500-202 \\
& \Rightarrow S=298 \\
\end{align}\]
So, it is clear that the value of S is equal to 298.
So, the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to 298.
Note: This problem can be solved alternatively.
From the question, it is given that we have to find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\].
Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to S.
\[\begin{align}
& \Rightarrow S=\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}....\text{(1)} \\
& \Rightarrow \text{S=(5+5+5+}.....\text{(100 terms))-}\left( \dfrac{2}{n}+\dfrac{4}{n}+\dfrac{6}{n}+.....(100\text{ terms)} \right) \\
& \Rightarrow S=5(100)-\left( \dfrac{2+4+6+....(100\text{ terms)}}{n} \right) \\
\end{align}\]
We know that if the first term of the A.P is equal to a and common difference is equal to d, then the sum of numbers of A.P is equal to \[\dfrac{n}{2}[2a+(n-1)d]\].
\[\begin{align}
& \Rightarrow S=500-\left( \dfrac{\left( \dfrac{100}{2} \right)[2(2)+(100-1)(2)]}{100} \right) \\
& \Rightarrow S=500-\left( \dfrac{50[4+198]}{100} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow S=500-\left( \dfrac{50(202)}{100} \right) \\
& \Rightarrow S=399 \\
\end{align}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

