
Find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\]
Answer
583.2k+ views
Hint: Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] as S. Now we have to find the value of S. Now we have to split the sum in to two parts. The first part shows numbers and the other part shows the expression of variable n. We know that the sum of n natural numbers is equal to \[\dfrac{n(n+1)}{2}\]. Now by using this formula, we can find the value of S.
Complete step by step answer:
From the question, it is given that we have to find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\].
Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to S.
\[\begin{align}
& \Rightarrow S=\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}....\text{(1)} \\
& \Rightarrow \text{S=(5+5+5+}.....\text{(100 terms))-}\left( \dfrac{2}{n}+\dfrac{4}{n}+\dfrac{6}{n}+.....(100\text{ terms)} \right) \\
& \Rightarrow S=5(100)-\left( \dfrac{2+4+6+....(100\text{ terms)}}{n} \right) \\
& \Rightarrow S=500-2\left( \dfrac{1+2+3+.....(100\text{ terms)}}{n} \right) \\
\end{align}\]
We know that the sum of n natural numbers is equal to \[\dfrac{n(n+1)}{2}\].
\[\Rightarrow S=500-2\left( \dfrac{\sum\limits_{n=1}^{100}{n}}{n} \right)\]
\[\Rightarrow S=500-2\left( \dfrac{\dfrac{100(100+1)}{2}}{n} \right)\]
\[\begin{align}
& \Rightarrow S=500-2\left( \dfrac{100(101)}{2(100)} \right) \\
& \Rightarrow S=500-2(101) \\
& \Rightarrow S=500-202 \\
& \Rightarrow S=298 \\
\end{align}\]
So, it is clear that the value of S is equal to 298.
So, the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to 298.
Note: This problem can be solved alternatively.
From the question, it is given that we have to find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\].
Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to S.
\[\begin{align}
& \Rightarrow S=\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}....\text{(1)} \\
& \Rightarrow \text{S=(5+5+5+}.....\text{(100 terms))-}\left( \dfrac{2}{n}+\dfrac{4}{n}+\dfrac{6}{n}+.....(100\text{ terms)} \right) \\
& \Rightarrow S=5(100)-\left( \dfrac{2+4+6+....(100\text{ terms)}}{n} \right) \\
\end{align}\]
We know that if the first term of the A.P is equal to a and common difference is equal to d, then the sum of numbers of A.P is equal to \[\dfrac{n}{2}[2a+(n-1)d]\].
\[\begin{align}
& \Rightarrow S=500-\left( \dfrac{\left( \dfrac{100}{2} \right)[2(2)+(100-1)(2)]}{100} \right) \\
& \Rightarrow S=500-\left( \dfrac{50[4+198]}{100} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow S=500-\left( \dfrac{50(202)}{100} \right) \\
& \Rightarrow S=399 \\
\end{align}\]
Complete step by step answer:
From the question, it is given that we have to find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\].
Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to S.
\[\begin{align}
& \Rightarrow S=\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}....\text{(1)} \\
& \Rightarrow \text{S=(5+5+5+}.....\text{(100 terms))-}\left( \dfrac{2}{n}+\dfrac{4}{n}+\dfrac{6}{n}+.....(100\text{ terms)} \right) \\
& \Rightarrow S=5(100)-\left( \dfrac{2+4+6+....(100\text{ terms)}}{n} \right) \\
& \Rightarrow S=500-2\left( \dfrac{1+2+3+.....(100\text{ terms)}}{n} \right) \\
\end{align}\]
We know that the sum of n natural numbers is equal to \[\dfrac{n(n+1)}{2}\].
\[\Rightarrow S=500-2\left( \dfrac{\sum\limits_{n=1}^{100}{n}}{n} \right)\]
\[\Rightarrow S=500-2\left( \dfrac{\dfrac{100(100+1)}{2}}{n} \right)\]
\[\begin{align}
& \Rightarrow S=500-2\left( \dfrac{100(101)}{2(100)} \right) \\
& \Rightarrow S=500-2(101) \\
& \Rightarrow S=500-202 \\
& \Rightarrow S=298 \\
\end{align}\]
So, it is clear that the value of S is equal to 298.
So, the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to 298.
Note: This problem can be solved alternatively.
From the question, it is given that we have to find the value of \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\].
Let us assume \[\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}\] is equal to S.
\[\begin{align}
& \Rightarrow S=\left( 5-\dfrac{2}{n} \right)+\left( 5-\dfrac{4}{n} \right)+\left( 5-\dfrac{6}{n} \right)+........(100\text{ terms)}....\text{(1)} \\
& \Rightarrow \text{S=(5+5+5+}.....\text{(100 terms))-}\left( \dfrac{2}{n}+\dfrac{4}{n}+\dfrac{6}{n}+.....(100\text{ terms)} \right) \\
& \Rightarrow S=5(100)-\left( \dfrac{2+4+6+....(100\text{ terms)}}{n} \right) \\
\end{align}\]
We know that if the first term of the A.P is equal to a and common difference is equal to d, then the sum of numbers of A.P is equal to \[\dfrac{n}{2}[2a+(n-1)d]\].
\[\begin{align}
& \Rightarrow S=500-\left( \dfrac{\left( \dfrac{100}{2} \right)[2(2)+(100-1)(2)]}{100} \right) \\
& \Rightarrow S=500-\left( \dfrac{50[4+198]}{100} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow S=500-\left( \dfrac{50(202)}{100} \right) \\
& \Rightarrow S=399 \\
\end{align}\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

