
Find the value of ${{\left( 2+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}$?
(a) 125
(b) 126
(c) 128
(d) 129
Answer
553.8k+ views
Hint: We start solving the problem by assuming the given sum equal to S. We then make the necessary arrangements inside the cubes of the given sum and then make use of the result that 1, $\omega $, ${{\omega }^{2}}$ are the complex cubic roots of unity and $1+\omega +{{\omega }^{2}}=0$. We then make necessary calculations and make use of the result ${{\omega }^{3}}=1$. We then make the necessary calculations to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the value of ${{\left( 2+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}$.
Let us assume $S={{\left( 2+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}$.
$\Rightarrow S={{\left( 1+1+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( -4\omega +1+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( -4\omega +1+\omega +{{\omega }^{2}} \right)}^{3}}$ ---(1).
We know that 1, $\omega $, ${{\omega }^{2}}$ are the complex cubic roots of unity. So, we have $1+\omega +{{\omega }^{2}}=0$. Let us substitute this result in equation (1).
$\Rightarrow S={{\left( 1+0 \right)}^{3}}-{{\left( -4\omega +0 \right)}^{3}}-{{\left( -4\omega +0 \right)}^{3}}$.
$\Rightarrow S={{\left( 1 \right)}^{3}}-{{\left( -4\omega \right)}^{3}}-{{\left( -4\omega \right)}^{3}}$.
$\Rightarrow S=1-\left( -64{{\omega }^{3}} \right)-\left( -64{{\omega }^{3}} \right)$ ---(2).
We know that ${{\omega }^{3}}=1$. Let us substitute this result in equation (2).
$\Rightarrow S=1-\left( -64\left( 1 \right) \right)-\left( -64\left( 1 \right) \right)$.
$\Rightarrow S=1-\left( -64 \right)-\left( -64 \right)$.
$\Rightarrow S=1+64+64$.
$\Rightarrow S=129$.
So, we have found the value of the given sum ${{\left( 2+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}$ as 129.
So, the correct answer is “Option d”.
Note: Whenever we get this type of problems, we should try to make use of the fact that 1, $\omega $, ${{\omega }^{2}}$ are the complex cubic roots of unity such that $1+\omega +{{\omega }^{2}}=0$, ${{\omega }^{3}}=1$ which leads us to the required answer. We should not make calculation mistakes while solving this type of problem. We can solve this problem by expanding the given cubes and then making the addition and subtraction operations manually which requires precision in calculation. Similarly, we can also expect problems to find the value of ${{\left( 2+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1+\omega -3{{\omega }^{2}} \right)}^{3}}$.
Complete step by step answer:
According to the problem, we are asked to find the value of ${{\left( 2+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}$.
Let us assume $S={{\left( 2+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}$.
$\Rightarrow S={{\left( 1+1+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( -4\omega +1+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( -4\omega +1+\omega +{{\omega }^{2}} \right)}^{3}}$ ---(1).
We know that 1, $\omega $, ${{\omega }^{2}}$ are the complex cubic roots of unity. So, we have $1+\omega +{{\omega }^{2}}=0$. Let us substitute this result in equation (1).
$\Rightarrow S={{\left( 1+0 \right)}^{3}}-{{\left( -4\omega +0 \right)}^{3}}-{{\left( -4\omega +0 \right)}^{3}}$.
$\Rightarrow S={{\left( 1 \right)}^{3}}-{{\left( -4\omega \right)}^{3}}-{{\left( -4\omega \right)}^{3}}$.
$\Rightarrow S=1-\left( -64{{\omega }^{3}} \right)-\left( -64{{\omega }^{3}} \right)$ ---(2).
We know that ${{\omega }^{3}}=1$. Let us substitute this result in equation (2).
$\Rightarrow S=1-\left( -64\left( 1 \right) \right)-\left( -64\left( 1 \right) \right)$.
$\Rightarrow S=1-\left( -64 \right)-\left( -64 \right)$.
$\Rightarrow S=1+64+64$.
$\Rightarrow S=129$.
So, we have found the value of the given sum ${{\left( 2+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}$ as 129.
So, the correct answer is “Option d”.
Note: Whenever we get this type of problems, we should try to make use of the fact that 1, $\omega $, ${{\omega }^{2}}$ are the complex cubic roots of unity such that $1+\omega +{{\omega }^{2}}=0$, ${{\omega }^{3}}=1$ which leads us to the required answer. We should not make calculation mistakes while solving this type of problem. We can solve this problem by expanding the given cubes and then making the addition and subtraction operations manually which requires precision in calculation. Similarly, we can also expect problems to find the value of ${{\left( 2+\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1-3\omega +{{\omega }^{2}} \right)}^{3}}-{{\left( 1+\omega -3{{\omega }^{2}} \right)}^{3}}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

