
Find the value of $ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $ , if $ \omega $ and $ {\omega ^2} $ are complex cube roots of unity.
Answer
506.7k+ views
Hint: First we have to define the terms we need to solve the problem.
Given that $ \omega $ and $ {\omega ^2} $ are complex cube roots of unity.
Therefore,
$ {\omega ^3} = 1 $
Use the identity,
$ 1 + \omega + {\omega ^2} = 0 $
Therefore,
$ 1 + \omega = - {\omega ^2} $
$ 1 + {\omega ^2} = - \omega $
Formula Used:
$ {\omega ^3} = 1 $
$ 1 + \omega + {\omega ^2} = 0 $
Complete step by step answer:
We need to find the value of $ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $
To find the required value let us solve the above equation,
$ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $
Let us rearrange the terms in the bracket,
$ = {\left( {1 + {\omega ^2} - \omega } \right)^5} + {\left( {1 + \omega - {\omega ^2}} \right)^5} $
On substituting value of $ 1 + {\omega ^2} = - \omega $ in first bracket we get,
$ = {\left( { - \omega - \omega } \right)^5} + {\left( {1 + \omega - {\omega ^2}} \right)^5} $
On substituting value of $ 1 + \omega = - {\omega ^2} $ in second bracket we get,
$ = {\left( { - \omega - \omega } \right)^5} + {\left( { - {\omega ^2} - {\omega ^2}} \right)^5} $
On performing the addition in first bracket we get,
$ = {\left( { - 2\omega } \right)^5} + {\left( { - {\omega ^2} - {\omega ^2}} \right)^5} $
On performing the addition in second bracket we get,
$ = {\left( { - 2\omega } \right)^5} + {\left( { - 2{\omega ^2}} \right)^5} $
On performing the power operations of the first bracket we get,
$ = - 32{\omega ^5} + {\left( { - 2{\omega ^2}} \right)^5} $
On performing the power operations of the second bracket we get,
$ = - 32{\omega ^5} - 32{\omega ^{10}} $
On taking \[ - 32{\omega ^5}\] from the both brackets we get,
\[ = - 32{\omega ^5}(1 + {\omega ^2})\]
On substituting value of $ 1 + {\omega ^2} = - \omega $ in the bracket we get,
\[ = - 32{\omega ^5} \times ( - \omega )\]
On performing the multiplication of both terms we get,
\[ = 32{\omega ^6}\]
On rearranging the terms we get,
\[ = 32 \times {({\omega ^3})^2}\]
On substituting value of $ {\omega ^3} = 1 $ in the bracket we get,
\[ = 32 \times {(1)^2}\]
On performing the multiplication of both terms we get,
\[ = 32\]
This is the required value.
Therefore,
$ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} = 32 $
Note: Any number when raised to power $ 3 $ or multiplied itself thrice, if given an answer as $ 1 $ , then such number is called the cube root of unity. Complex cube root is usually denoted by $ \omega $ . Complex cube roots of unity are imaginary cube roots of unity. One imaginary cube root of unity is the square of another imaginary cube root of unity i.e. one imaginary cube root of unity is $ \omega $ and other is $ {\omega ^2} $ .
Given that $ \omega $ and $ {\omega ^2} $ are complex cube roots of unity.
Therefore,
$ {\omega ^3} = 1 $
Use the identity,
$ 1 + \omega + {\omega ^2} = 0 $
Therefore,
$ 1 + \omega = - {\omega ^2} $
$ 1 + {\omega ^2} = - \omega $
Formula Used:
$ {\omega ^3} = 1 $
$ 1 + \omega + {\omega ^2} = 0 $
Complete step by step answer:
We need to find the value of $ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $
To find the required value let us solve the above equation,
$ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} $
Let us rearrange the terms in the bracket,
$ = {\left( {1 + {\omega ^2} - \omega } \right)^5} + {\left( {1 + \omega - {\omega ^2}} \right)^5} $
On substituting value of $ 1 + {\omega ^2} = - \omega $ in first bracket we get,
$ = {\left( { - \omega - \omega } \right)^5} + {\left( {1 + \omega - {\omega ^2}} \right)^5} $
On substituting value of $ 1 + \omega = - {\omega ^2} $ in second bracket we get,
$ = {\left( { - \omega - \omega } \right)^5} + {\left( { - {\omega ^2} - {\omega ^2}} \right)^5} $
On performing the addition in first bracket we get,
$ = {\left( { - 2\omega } \right)^5} + {\left( { - {\omega ^2} - {\omega ^2}} \right)^5} $
On performing the addition in second bracket we get,
$ = {\left( { - 2\omega } \right)^5} + {\left( { - 2{\omega ^2}} \right)^5} $
On performing the power operations of the first bracket we get,
$ = - 32{\omega ^5} + {\left( { - 2{\omega ^2}} \right)^5} $
On performing the power operations of the second bracket we get,
$ = - 32{\omega ^5} - 32{\omega ^{10}} $
On taking \[ - 32{\omega ^5}\] from the both brackets we get,
\[ = - 32{\omega ^5}(1 + {\omega ^2})\]
On substituting value of $ 1 + {\omega ^2} = - \omega $ in the bracket we get,
\[ = - 32{\omega ^5} \times ( - \omega )\]
On performing the multiplication of both terms we get,
\[ = 32{\omega ^6}\]
On rearranging the terms we get,
\[ = 32 \times {({\omega ^3})^2}\]
On substituting value of $ {\omega ^3} = 1 $ in the bracket we get,
\[ = 32 \times {(1)^2}\]
On performing the multiplication of both terms we get,
\[ = 32\]
This is the required value.
Therefore,
$ {\left( {1 - \omega + {\omega ^2}} \right)^5} + {\left( {1 - {\omega ^2} + \omega } \right)^5} = 32 $
Note: Any number when raised to power $ 3 $ or multiplied itself thrice, if given an answer as $ 1 $ , then such number is called the cube root of unity. Complex cube root is usually denoted by $ \omega $ . Complex cube roots of unity are imaginary cube roots of unity. One imaginary cube root of unity is the square of another imaginary cube root of unity i.e. one imaginary cube root of unity is $ \omega $ and other is $ {\omega ^2} $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

