
Find the value of ${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$.
A. -8
B. 8i
C. 8
D. 32
Answer
557.4k+ views
Hint: We have been given an equation of complex identity. We use binomial theorem to form the sum of two numbers with power n as ${{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2\left[ 1+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{4}}{{x}^{4}}+{}^{n}{{C}_{6}}{{x}^{6}}+.. \right]$. We replace the values of x and n. then we use the indices values of $i=\sqrt{-1}$ to get the solution of the problem.
Complete step-by-step solution
We have been given a complex equation to solve ${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$ where $i=\sqrt{-1}$.
We also have the identities of ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
From the theorem we get \[{{\left( 1+x \right)}^{n}}=1+{}^{n}{{C}_{1}}{{x}^{1}}+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{3}}{{x}^{3}}+.....+{}^{n}{{C}_{n}}{{x}^{n}}\] and for
\[{{\left( 1-x \right)}^{n}}=1-{}^{n}{{C}_{1}}{{x}^{1}}+{}^{n}{{C}_{2}}{{x}^{2}}-{}^{n}{{C}_{3}}{{x}^{3}}+.....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{x}^{n}}\]. Adding that we get the sum of binomial of two numbers tell that ${{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2\left[ 1+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{4}}{{x}^{4}}+{}^{n}{{C}_{6}}{{x}^{6}}+.. \right]$.
So, the even positioned terms in the expansion get doubled and the oddly positioned terms get eliminated.
We replace the values $x=i,n=5$. We get ${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}=2\left[ 1+{}^{5}{{C}_{2}}{{i}^{2}}+{}^{5}{{C}_{4}}{{i}^{4}} \right]$.
Now we replace the values
$\begin{align}
& {{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}} \\
& =2\left[ 1-\dfrac{5!}{2!3!}+\dfrac{5!}{4!1!} \right] \\
& =2\left[ 1-10+5 \right] \\
& =-8 \\
\end{align}$
Therefore, the value of ${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$ is -8. The correct option is A.
Note: In equation of ${{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2\left[ 1+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{4}}{{x}^{4}}+{}^{n}{{C}_{6}}{{x}^{6}}+.. \right]$, the end is finalised depending on the value of n. The term changes depending on if n is odd or even. In every binomial the number of terms is one greater than the power value of the binomial.
Complete step-by-step solution
We have been given a complex equation to solve ${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$ where $i=\sqrt{-1}$.
We also have the identities of ${{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1$.
From the theorem we get \[{{\left( 1+x \right)}^{n}}=1+{}^{n}{{C}_{1}}{{x}^{1}}+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{3}}{{x}^{3}}+.....+{}^{n}{{C}_{n}}{{x}^{n}}\] and for
\[{{\left( 1-x \right)}^{n}}=1-{}^{n}{{C}_{1}}{{x}^{1}}+{}^{n}{{C}_{2}}{{x}^{2}}-{}^{n}{{C}_{3}}{{x}^{3}}+.....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{x}^{n}}\]. Adding that we get the sum of binomial of two numbers tell that ${{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2\left[ 1+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{4}}{{x}^{4}}+{}^{n}{{C}_{6}}{{x}^{6}}+.. \right]$.
So, the even positioned terms in the expansion get doubled and the oddly positioned terms get eliminated.
We replace the values $x=i,n=5$. We get ${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}=2\left[ 1+{}^{5}{{C}_{2}}{{i}^{2}}+{}^{5}{{C}_{4}}{{i}^{4}} \right]$.
Now we replace the values
$\begin{align}
& {{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}} \\
& =2\left[ 1-\dfrac{5!}{2!3!}+\dfrac{5!}{4!1!} \right] \\
& =2\left[ 1-10+5 \right] \\
& =-8 \\
\end{align}$
Therefore, the value of ${{\left( 1+i \right)}^{5}}+{{\left( 1-i \right)}^{5}}$ is -8. The correct option is A.
Note: In equation of ${{\left( 1+x \right)}^{n}}+{{\left( 1-x \right)}^{n}}=2\left[ 1+{}^{n}{{C}_{2}}{{x}^{2}}+{}^{n}{{C}_{4}}{{x}^{4}}+{}^{n}{{C}_{6}}{{x}^{6}}+.. \right]$, the end is finalised depending on the value of n. The term changes depending on if n is odd or even. In every binomial the number of terms is one greater than the power value of the binomial.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

