
Find the value of k so that the following equation may represent pairs of straight lines:
$12{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0$
Answer
611.7k+ views
Hint: Compare the given equation $12{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0$ with a general equation in second degree $a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$ then apply the condition for a pair of straight lines.
Complete step-by-step answer:
The equation $12{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0$ given in the question is an equation in second degree so we can compare this equation by $a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$.
$12{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0$
$a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
Comparing the coefficient of ${{x}^{2}}$ will give a = 12.
Comparing the coefficient of $xy$ will give $h=-\dfrac{k}{2}$.
Comparing the coefficient of ${{y}^{2}}$ will give b = 2.
Comparing the coefficient of $x$ will give $g=\dfrac{11}{2}$.
Comparing the coefficient of $y$ will give $f=-\dfrac{5}{2}$.
Comparing the constant will give $c$ = 2.
The given equation represents a pair of straight lines so the condition for a general second degree equation $a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$ is:
$abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{f}^{2}}=0$
Substituting the value of a, b, c, f, g, h in the above equation we get,
$\begin{align}
& \left( 12 \right)\left( 2 \right)\left( 2 \right)+2\left( -\dfrac{5}{2} \right)\left( \dfrac{11}{2} \right)\left( -\dfrac{k}{2} \right)-12\left( \dfrac{25}{4} \right)-2\left( \dfrac{121}{4} \right)-2\left( \dfrac{25}{4} \right)=0 \\
& \Rightarrow 48+\dfrac{55k}{4}-75-\dfrac{121}{2}-\dfrac{25}{2}=0 \\
& \Rightarrow -27-\dfrac{146}{2}+\dfrac{55k}{4}=0 \\
& \Rightarrow \dfrac{55k}{4}-27-73=0 \\
& \Rightarrow \dfrac{55k}{4}-100=0 \\
& \Rightarrow k=\dfrac{400}{55} \\
& \Rightarrow k=\dfrac{80}{11} \\
\end{align}$
Hence, the value of k for which the given equation represents a pair of straight lines is$\dfrac{80}{11}$.
Note: In the above problem, you might be wondering from where this condition for straight lines has come. The derivation for condition of a second degree equation represents a pair of straight lines is as follows:
$a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
$a{{x}^{2}}+\left( 2hy+2g \right)x+b{{y}^{2}}+2fy+c=0$
The above equation is quadratic in x so the solution is:
$x=\dfrac{-\left( 2hy+2g \right)\pm \sqrt{{{\left( 2hy+2g \right)}^{2}}-4\left( a{{x}^{2}} \right)\left( b{{y}^{2}}+2fy+c \right)}}{2a}$
$x=\dfrac{-\left( hy+g \right)\pm \sqrt{{{\left( hy+g \right)}^{2}}-\left( a{{x}^{2}} \right)\left( b{{y}^{2}}+2fy+c \right)}}{a}$
For the equation to be pair of straight lines, expression in the square root must be a perfect square so:
\[\begin{align}
& {{h}^{2}}{{y}^{2}}+{{g}^{2}}+2hyg-ab{{y}^{2}}-2afy-ac \\
& \left( {{h}^{2}}-ab \right){{y}^{2}}+\left( 2gh-2af \right)y+\left( {{g}^{2}}-ac \right) \\
\end{align}\]
The above quadratic equation in y is a perfect square when the discriminant of the above equation is 0.
D = 0 for \[\left( {{h}^{2}}-ab \right){{y}^{2}}+\left( 2gh-2af \right)y+\left( {{g}^{2}}-ac \right)\]
$D={{\left( 2gh-2af \right)}^{2}}-4\left( {{h}^{2}}-ab \right)\left( {{g}^{2}}-ac \right)=0$
Solving the above equation will give:
$abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{f}^{2}}=0$
Complete step-by-step answer:
The equation $12{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0$ given in the question is an equation in second degree so we can compare this equation by $a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$.
$12{{x}^{2}}-kxy+2{{y}^{2}}+11x-5y+2=0$
$a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
Comparing the coefficient of ${{x}^{2}}$ will give a = 12.
Comparing the coefficient of $xy$ will give $h=-\dfrac{k}{2}$.
Comparing the coefficient of ${{y}^{2}}$ will give b = 2.
Comparing the coefficient of $x$ will give $g=\dfrac{11}{2}$.
Comparing the coefficient of $y$ will give $f=-\dfrac{5}{2}$.
Comparing the constant will give $c$ = 2.
The given equation represents a pair of straight lines so the condition for a general second degree equation $a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$ is:
$abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{f}^{2}}=0$
Substituting the value of a, b, c, f, g, h in the above equation we get,
$\begin{align}
& \left( 12 \right)\left( 2 \right)\left( 2 \right)+2\left( -\dfrac{5}{2} \right)\left( \dfrac{11}{2} \right)\left( -\dfrac{k}{2} \right)-12\left( \dfrac{25}{4} \right)-2\left( \dfrac{121}{4} \right)-2\left( \dfrac{25}{4} \right)=0 \\
& \Rightarrow 48+\dfrac{55k}{4}-75-\dfrac{121}{2}-\dfrac{25}{2}=0 \\
& \Rightarrow -27-\dfrac{146}{2}+\dfrac{55k}{4}=0 \\
& \Rightarrow \dfrac{55k}{4}-27-73=0 \\
& \Rightarrow \dfrac{55k}{4}-100=0 \\
& \Rightarrow k=\dfrac{400}{55} \\
& \Rightarrow k=\dfrac{80}{11} \\
\end{align}$
Hence, the value of k for which the given equation represents a pair of straight lines is$\dfrac{80}{11}$.
Note: In the above problem, you might be wondering from where this condition for straight lines has come. The derivation for condition of a second degree equation represents a pair of straight lines is as follows:
$a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
$a{{x}^{2}}+\left( 2hy+2g \right)x+b{{y}^{2}}+2fy+c=0$
The above equation is quadratic in x so the solution is:
$x=\dfrac{-\left( 2hy+2g \right)\pm \sqrt{{{\left( 2hy+2g \right)}^{2}}-4\left( a{{x}^{2}} \right)\left( b{{y}^{2}}+2fy+c \right)}}{2a}$
$x=\dfrac{-\left( hy+g \right)\pm \sqrt{{{\left( hy+g \right)}^{2}}-\left( a{{x}^{2}} \right)\left( b{{y}^{2}}+2fy+c \right)}}{a}$
For the equation to be pair of straight lines, expression in the square root must be a perfect square so:
\[\begin{align}
& {{h}^{2}}{{y}^{2}}+{{g}^{2}}+2hyg-ab{{y}^{2}}-2afy-ac \\
& \left( {{h}^{2}}-ab \right){{y}^{2}}+\left( 2gh-2af \right)y+\left( {{g}^{2}}-ac \right) \\
\end{align}\]
The above quadratic equation in y is a perfect square when the discriminant of the above equation is 0.
D = 0 for \[\left( {{h}^{2}}-ab \right){{y}^{2}}+\left( 2gh-2af \right)y+\left( {{g}^{2}}-ac \right)\]
$D={{\left( 2gh-2af \right)}^{2}}-4\left( {{h}^{2}}-ab \right)\left( {{g}^{2}}-ac \right)=0$
Solving the above equation will give:
$abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{f}^{2}}=0$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

