
Find the value of k, infinitely many solution $$2x + 3y = 7,(k - 1)x + (k + 2)y = 3k$$
Answer
577.8k+ views
Hint: We know the general equations i.e.
$ {{a_1}x + b{_1}y = {c_1}} $
$ {{a_2}x + b{_2}y = {c_2}} $
After comparing general equations with the given equation we got the value. After that we need to apply the condition of infinite solution which is $$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$$ . after this we can get the value of k.
Complete step-by-step answer:
Consider the given equations.
2x + 3y = 7
(k - 1)x + (k + 2)y = 3k
The general equations
$ {{a_1}x + b{_1}y = {c_1}}$
$ {{a_2}x + b{_2}y = {c_2}}$
So,
$ {{a_1} = 2,{b_1} = 3,{c_1} = 7}$
${a_2}$ = k - 1,${b_2}$ = k + 2,${c_2}$ = 3k
We know that the condition of infinite solution
$$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$$
Therefore,
${\dfrac{2}{{k - 1}} = \dfrac{3}{{k + 2}} = \dfrac{7}{{3k}}}$
$ { \Rightarrow \dfrac{2}{{k - 1}} = \dfrac{3}{{k + 2}}}$
$ { \Rightarrow 2k + 4 = 3k - 3}$
${ \Rightarrow k = 7}$
Hence, the value of k is $$7$$ .
Note: We knew the general equations , here we compare those with equations given in problem. After that applied the condition of infinite solution which is $$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$$ .After comparing equation we got the value of k.
$ {{a_1}x + b{_1}y = {c_1}} $
$ {{a_2}x + b{_2}y = {c_2}} $
After comparing general equations with the given equation we got the value. After that we need to apply the condition of infinite solution which is $$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$$ . after this we can get the value of k.
Complete step-by-step answer:
Consider the given equations.
2x + 3y = 7
(k - 1)x + (k + 2)y = 3k
The general equations
$ {{a_1}x + b{_1}y = {c_1}}$
$ {{a_2}x + b{_2}y = {c_2}}$
So,
$ {{a_1} = 2,{b_1} = 3,{c_1} = 7}$
${a_2}$ = k - 1,${b_2}$ = k + 2,${c_2}$ = 3k
We know that the condition of infinite solution
$$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$$
Therefore,
${\dfrac{2}{{k - 1}} = \dfrac{3}{{k + 2}} = \dfrac{7}{{3k}}}$
$ { \Rightarrow \dfrac{2}{{k - 1}} = \dfrac{3}{{k + 2}}}$
$ { \Rightarrow 2k + 4 = 3k - 3}$
${ \Rightarrow k = 7}$
Hence, the value of k is $$7$$ .
Note: We knew the general equations , here we compare those with equations given in problem. After that applied the condition of infinite solution which is $$\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}$$ .After comparing equation we got the value of k.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

