
Find the value of k for which the points \[A\left( {K + 1,{\text{ }}2x} \right),B\left( {3k,{\text{ }}2k + 3} \right),C\left( {5k - 1,5k} \right)\] are collinear.
Answer
589.2k+ views
Hint: Collinear points are the points that lie on the same line. Two or more than two points lie on a line close to or far from each other.
Complete step by step solution:
Points $A(k + 1,2k),B(3k,2k + 3)andC(3k - 1,5k)$ are collinear, then the area of triangle must be $0$
$\therefore $Area of triangle $ABC = 0$
Here, ${x_1} = k + 1,\,{x_2} = 3k,\,{x_3} = 3k - 1$
${y_1} = 2k,\,{y_2} = 2k + 3,\,{y_3} = 5k$
Area of triangle $ABC = \dfrac{1}{2}|({x_1}({y_1} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})|$
$ = \dfrac{1}{2}|(k + 1)\{ (2k + 3) - 5k\} + 3k\{ 5k - 2k\} + (5k - 1)\{ 2k - (2k + 3)\} |$
$ = \dfrac{1}{2}|(k + 1)\{ 2k + 3 - 5k\} + 3k(3k) + (5k - 1)\{ 2k - 2k - 3\} |$
$ = \dfrac{1}{2}|(k + 1)\{ 3 - 3k\} + 3k(3k) + (5k - 1)\{ - 3\} |$
\[ = \dfrac{1}{2}|\{ k(3 - 3k) + 1(3 - 3k)\} + \{ 3 \times 3 \times k \times k\} + \{ - 15k + 3\} |\]
$ = \dfrac{1}{2}|\{ 3k - 3{k^2} + 3 - 3k\} + \{ 9{k^2}\} - 15k + 3|$
$ = \dfrac{1}{2}|\{ 3k - 3{k^2} - 3k + 3\} + 9{k^2} - 15k + 3|$
$ = \dfrac{1}{2}| - 3{k^2} + 3 + 9{k^2} - 15k + 3|$
$ = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$ = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$\therefore $Area of $\Delta ABC = 0$ $[\therefore po\operatorname{int} s\,\,are\,\,collinear]$
$0 = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$0 = 6{k^2} - 15k + 6$
$0 = 3(2{k^2} - 5k + 2)$
$\dfrac{0}{3} = 2{k^2} - 5k + 2$
$0 = 2{k^2} - 5k + 2$
$ \Rightarrow 2{k^2} - 5k + 2 = 0$
We will split the middle term in the above equation
$2{k^2} - 5k + 2 = 0$
$2{k^2} - 4k - k + 2 = 0$
$2k(k - 2) - 1(k - 2) = 0$
$(2k - 1)(12 - 2) = 0$
$
\Rightarrow 2k - 1 = 0 \\
\Rightarrow 2k = 0 + 1 \\
\Rightarrow 2k = 1 \\
\Rightarrow K = \dfrac{1}{2} \\
$
$
k - 2 = 0 \\
k = 2 \\
$
$ \Rightarrow 12 = 2,\dfrac{1}{2}$
The points of $k$ are $2\,and\,\dfrac{1}{2}$.
Note: We can find the collinearity of the points by using the method mentioned below:
$A,B,C$ are collinear points if they satisfy the condition. $AC = AB + BC$
Complete step by step solution:
Points $A(k + 1,2k),B(3k,2k + 3)andC(3k - 1,5k)$ are collinear, then the area of triangle must be $0$
$\therefore $Area of triangle $ABC = 0$
Here, ${x_1} = k + 1,\,{x_2} = 3k,\,{x_3} = 3k - 1$
${y_1} = 2k,\,{y_2} = 2k + 3,\,{y_3} = 5k$
Area of triangle $ABC = \dfrac{1}{2}|({x_1}({y_1} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})|$
$ = \dfrac{1}{2}|(k + 1)\{ (2k + 3) - 5k\} + 3k\{ 5k - 2k\} + (5k - 1)\{ 2k - (2k + 3)\} |$
$ = \dfrac{1}{2}|(k + 1)\{ 2k + 3 - 5k\} + 3k(3k) + (5k - 1)\{ 2k - 2k - 3\} |$
$ = \dfrac{1}{2}|(k + 1)\{ 3 - 3k\} + 3k(3k) + (5k - 1)\{ - 3\} |$
\[ = \dfrac{1}{2}|\{ k(3 - 3k) + 1(3 - 3k)\} + \{ 3 \times 3 \times k \times k\} + \{ - 15k + 3\} |\]
$ = \dfrac{1}{2}|\{ 3k - 3{k^2} + 3 - 3k\} + \{ 9{k^2}\} - 15k + 3|$
$ = \dfrac{1}{2}|\{ 3k - 3{k^2} - 3k + 3\} + 9{k^2} - 15k + 3|$
$ = \dfrac{1}{2}| - 3{k^2} + 3 + 9{k^2} - 15k + 3|$
$ = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$ = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$\therefore $Area of $\Delta ABC = 0$ $[\therefore po\operatorname{int} s\,\,are\,\,collinear]$
$0 = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$0 = 6{k^2} - 15k + 6$
$0 = 3(2{k^2} - 5k + 2)$
$\dfrac{0}{3} = 2{k^2} - 5k + 2$
$0 = 2{k^2} - 5k + 2$
$ \Rightarrow 2{k^2} - 5k + 2 = 0$
We will split the middle term in the above equation
$2{k^2} - 5k + 2 = 0$
$2{k^2} - 4k - k + 2 = 0$
$2k(k - 2) - 1(k - 2) = 0$
$(2k - 1)(12 - 2) = 0$
$
\Rightarrow 2k - 1 = 0 \\
\Rightarrow 2k = 0 + 1 \\
\Rightarrow 2k = 1 \\
\Rightarrow K = \dfrac{1}{2} \\
$
$
k - 2 = 0 \\
k = 2 \\
$
$ \Rightarrow 12 = 2,\dfrac{1}{2}$
The points of $k$ are $2\,and\,\dfrac{1}{2}$.
Note: We can find the collinearity of the points by using the method mentioned below:
$A,B,C$ are collinear points if they satisfy the condition. $AC = AB + BC$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

