
Find the value of k for which the points \[A\left( {K + 1,{\text{ }}2x} \right),B\left( {3k,{\text{ }}2k + 3} \right),C\left( {5k - 1,5k} \right)\] are collinear.
Answer
507.9k+ views
Hint: Collinear points are the points that lie on the same line. Two or more than two points lie on a line close to or far from each other.
Complete step by step solution:
Points $A(k + 1,2k),B(3k,2k + 3)andC(3k - 1,5k)$ are collinear, then the area of triangle must be $0$
$\therefore $Area of triangle $ABC = 0$
Here, ${x_1} = k + 1,\,{x_2} = 3k,\,{x_3} = 3k - 1$
${y_1} = 2k,\,{y_2} = 2k + 3,\,{y_3} = 5k$
Area of triangle $ABC = \dfrac{1}{2}|({x_1}({y_1} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})|$
$ = \dfrac{1}{2}|(k + 1)\{ (2k + 3) - 5k\} + 3k\{ 5k - 2k\} + (5k - 1)\{ 2k - (2k + 3)\} |$
$ = \dfrac{1}{2}|(k + 1)\{ 2k + 3 - 5k\} + 3k(3k) + (5k - 1)\{ 2k - 2k - 3\} |$
$ = \dfrac{1}{2}|(k + 1)\{ 3 - 3k\} + 3k(3k) + (5k - 1)\{ - 3\} |$
\[ = \dfrac{1}{2}|\{ k(3 - 3k) + 1(3 - 3k)\} + \{ 3 \times 3 \times k \times k\} + \{ - 15k + 3\} |\]
$ = \dfrac{1}{2}|\{ 3k - 3{k^2} + 3 - 3k\} + \{ 9{k^2}\} - 15k + 3|$
$ = \dfrac{1}{2}|\{ 3k - 3{k^2} - 3k + 3\} + 9{k^2} - 15k + 3|$
$ = \dfrac{1}{2}| - 3{k^2} + 3 + 9{k^2} - 15k + 3|$
$ = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$ = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$\therefore $Area of $\Delta ABC = 0$ $[\therefore po\operatorname{int} s\,\,are\,\,collinear]$
$0 = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$0 = 6{k^2} - 15k + 6$
$0 = 3(2{k^2} - 5k + 2)$
$\dfrac{0}{3} = 2{k^2} - 5k + 2$
$0 = 2{k^2} - 5k + 2$
$ \Rightarrow 2{k^2} - 5k + 2 = 0$
We will split the middle term in the above equation
$2{k^2} - 5k + 2 = 0$
$2{k^2} - 4k - k + 2 = 0$
$2k(k - 2) - 1(k - 2) = 0$
$(2k - 1)(12 - 2) = 0$
$
\Rightarrow 2k - 1 = 0 \\
\Rightarrow 2k = 0 + 1 \\
\Rightarrow 2k = 1 \\
\Rightarrow K = \dfrac{1}{2} \\
$
$
k - 2 = 0 \\
k = 2 \\
$
$ \Rightarrow 12 = 2,\dfrac{1}{2}$
The points of $k$ are $2\,and\,\dfrac{1}{2}$.
Note: We can find the collinearity of the points by using the method mentioned below:
$A,B,C$ are collinear points if they satisfy the condition. $AC = AB + BC$
Complete step by step solution:

Points $A(k + 1,2k),B(3k,2k + 3)andC(3k - 1,5k)$ are collinear, then the area of triangle must be $0$
$\therefore $Area of triangle $ABC = 0$
Here, ${x_1} = k + 1,\,{x_2} = 3k,\,{x_3} = 3k - 1$
${y_1} = 2k,\,{y_2} = 2k + 3,\,{y_3} = 5k$
Area of triangle $ABC = \dfrac{1}{2}|({x_1}({y_1} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})|$
$ = \dfrac{1}{2}|(k + 1)\{ (2k + 3) - 5k\} + 3k\{ 5k - 2k\} + (5k - 1)\{ 2k - (2k + 3)\} |$
$ = \dfrac{1}{2}|(k + 1)\{ 2k + 3 - 5k\} + 3k(3k) + (5k - 1)\{ 2k - 2k - 3\} |$
$ = \dfrac{1}{2}|(k + 1)\{ 3 - 3k\} + 3k(3k) + (5k - 1)\{ - 3\} |$
\[ = \dfrac{1}{2}|\{ k(3 - 3k) + 1(3 - 3k)\} + \{ 3 \times 3 \times k \times k\} + \{ - 15k + 3\} |\]
$ = \dfrac{1}{2}|\{ 3k - 3{k^2} + 3 - 3k\} + \{ 9{k^2}\} - 15k + 3|$
$ = \dfrac{1}{2}|\{ 3k - 3{k^2} - 3k + 3\} + 9{k^2} - 15k + 3|$
$ = \dfrac{1}{2}| - 3{k^2} + 3 + 9{k^2} - 15k + 3|$
$ = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$ = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$\therefore $Area of $\Delta ABC = 0$ $[\therefore po\operatorname{int} s\,\,are\,\,collinear]$
$0 = \dfrac{1}{2}(6{k^2} - 15k + 6)$
$0 = 6{k^2} - 15k + 6$
$0 = 3(2{k^2} - 5k + 2)$
$\dfrac{0}{3} = 2{k^2} - 5k + 2$
$0 = 2{k^2} - 5k + 2$
$ \Rightarrow 2{k^2} - 5k + 2 = 0$
We will split the middle term in the above equation
$2{k^2} - 5k + 2 = 0$
$2{k^2} - 4k - k + 2 = 0$
$2k(k - 2) - 1(k - 2) = 0$
$(2k - 1)(12 - 2) = 0$
$
\Rightarrow 2k - 1 = 0 \\
\Rightarrow 2k = 0 + 1 \\
\Rightarrow 2k = 1 \\
\Rightarrow K = \dfrac{1}{2} \\
$
$
k - 2 = 0 \\
k = 2 \\
$
$ \Rightarrow 12 = 2,\dfrac{1}{2}$
The points of $k$ are $2\,and\,\dfrac{1}{2}$.
Note: We can find the collinearity of the points by using the method mentioned below:
$A,B,C$ are collinear points if they satisfy the condition. $AC = AB + BC$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
