
Find the value of k for which the following system of equations has no solution:
$3x-4y+7=0$ and $kx+3y-5=0$.
Answer
601.8k+ views
Hint: In this problem, we will the condition for which a system of linear equations has no solution which is given as $\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}}$ . After applying this condition to the given system of linear equations, we can find the value of k.
Complete Step-by-Step solution:
A system of linear equations can have no solution, a unique solution or infinitely many solutions. A given system of linear equations has no solution if the equations are inconsistent.
If a system of linear equation is given as:
$\begin{align}
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0 \\
& {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0 \\
\end{align}$
For the above system of linear equations to be inconsistent, it must satisfy the condition that:
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}}$ , that is the graph of the equations must be parallel to each other.
For the system of linear equations to have infinite solutions, it must satisfy the condition that $\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$, that is the graph of the equations must coincide.
For the system of linear equations to have a unique solution:
$\dfrac{{{a}_{1}}}{{{a}_{2}}}\ne \dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}}$
Now, the system of linear equations given to us is:
$\begin{align}
& 3x-4y+7=0 \\
& kx+3y-5=0 \\
\end{align}$
For this given system of equations to have no solution, it should satisfy:
$\dfrac{3}{k}=\dfrac{-4}{3}\ne \dfrac{7}{-5}$
So, we have:
$\begin{align}
& \dfrac{3}{k}=\dfrac{-4}{3} \\
& \Rightarrow 9=-4k \\
& \Rightarrow k=\dfrac{-9}{4} \\
\end{align}$
Also, we have:
$\begin{align}
& \dfrac{3}{k}\ne \dfrac{-7}{5} \\
& \Rightarrow 15\ne -7k \\
& \Rightarrow k\ne \dfrac{-15}{7} \\
\end{align}$
Hence, the value of k is equal to $\dfrac{-9}{4}$ given equation will have no solution.
Note: Students should note here that for a system of linear equations to be inconsistent, the graph of the equations must be parallel to each other. So, the ratio of coefficients of x and y must be equal and it should not be equal to the ratio of the constant term.
Complete Step-by-Step solution:
A system of linear equations can have no solution, a unique solution or infinitely many solutions. A given system of linear equations has no solution if the equations are inconsistent.
If a system of linear equation is given as:
$\begin{align}
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0 \\
& {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0 \\
\end{align}$
For the above system of linear equations to be inconsistent, it must satisfy the condition that:
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}}$ , that is the graph of the equations must be parallel to each other.
For the system of linear equations to have infinite solutions, it must satisfy the condition that $\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$, that is the graph of the equations must coincide.
For the system of linear equations to have a unique solution:
$\dfrac{{{a}_{1}}}{{{a}_{2}}}\ne \dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}}$
Now, the system of linear equations given to us is:
$\begin{align}
& 3x-4y+7=0 \\
& kx+3y-5=0 \\
\end{align}$
For this given system of equations to have no solution, it should satisfy:
$\dfrac{3}{k}=\dfrac{-4}{3}\ne \dfrac{7}{-5}$
So, we have:
$\begin{align}
& \dfrac{3}{k}=\dfrac{-4}{3} \\
& \Rightarrow 9=-4k \\
& \Rightarrow k=\dfrac{-9}{4} \\
\end{align}$
Also, we have:
$\begin{align}
& \dfrac{3}{k}\ne \dfrac{-7}{5} \\
& \Rightarrow 15\ne -7k \\
& \Rightarrow k\ne \dfrac{-15}{7} \\
\end{align}$
Hence, the value of k is equal to $\dfrac{-9}{4}$ given equation will have no solution.
Note: Students should note here that for a system of linear equations to be inconsistent, the graph of the equations must be parallel to each other. So, the ratio of coefficients of x and y must be equal and it should not be equal to the ratio of the constant term.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

