
Find the value of \[k\] for which each of the following systems of equations have infinitely many solutions:
\[
x + \left( {k + 1} \right)y = 4 \\
\left( {k + 1} \right)x + 9y = 5k + 2 \\
\]
Answer
509.1k+ views
Hint: In this question, we will proceed by writing the given system of equations and then comparing them with the standard system of equations. Further use the condition for having infinitely many solutions in the given system of equations to get the value of \[k\].
Complete step by step answer:
The given system of equations is
\[
x + \left( {k + 1} \right)y = 4 \\
\left( {k + 1} \right)x + 9y = 5k + 2 \\
\]
Which can be written as
\[
x + \left( {k + 1} \right)y - 4 = 0 \\
\left( {k + 1} \right)x + 9y - \left( {5k + 2} \right) = 0 \\
\]
This system of equations is of the form
\[
{a_1}x + {b_1}y + {c_1} = 0 \\
{a_2}x + {b_2}y + {c_2} = 0 \\
\]
Where, \[{a_1} = 1,{b_1} = k + 1,{c_1} = - 4\] and \[{a_2} = k + 1,{b_2} = 9,{c_2} = - \left( {5k + 2} \right)\]
We know that for infinitely many solutions, we must have
\[
\Rightarrow \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} \\
\Rightarrow \dfrac{1}{{k + 1}} = \dfrac{{k + 1}}{9} = \dfrac{{ - 4}}{{ - 5k - 2}} \\
\]
Now taking first and second parts of the above equation, we get
\[
\Rightarrow \dfrac{1}{{k + 1}} = \dfrac{{k + 1}}{9} \\
\Rightarrow 9 = \left( {k + 1} \right)\left( {k + 1} \right) \\
\]
We can write 9 as \[{3^2}\]. So, we have
\[ \Rightarrow {\left( {k + 1} \right)^2} = {3^2}\]
Rooting on both sides, we have
\[
\Rightarrow \left( {k + 1} \right) = 3 \\
\Rightarrow k = 3 - 1 \\
\therefore k = 2 \\
\]
Thus, the required value of \[k\] is 2.
Note:
The condition for the system equations \[{a_1}x + {b_1}y + {c_1} = 0\] and \[{a_2}x + {b_2}y + {c_2} = 0\] to have infinitely many solutions is \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\] and the condition to have unique solution is \[\dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}\].
Complete step by step answer:
The given system of equations is
\[
x + \left( {k + 1} \right)y = 4 \\
\left( {k + 1} \right)x + 9y = 5k + 2 \\
\]
Which can be written as
\[
x + \left( {k + 1} \right)y - 4 = 0 \\
\left( {k + 1} \right)x + 9y - \left( {5k + 2} \right) = 0 \\
\]
This system of equations is of the form
\[
{a_1}x + {b_1}y + {c_1} = 0 \\
{a_2}x + {b_2}y + {c_2} = 0 \\
\]
Where, \[{a_1} = 1,{b_1} = k + 1,{c_1} = - 4\] and \[{a_2} = k + 1,{b_2} = 9,{c_2} = - \left( {5k + 2} \right)\]
We know that for infinitely many solutions, we must have
\[
\Rightarrow \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}} \\
\Rightarrow \dfrac{1}{{k + 1}} = \dfrac{{k + 1}}{9} = \dfrac{{ - 4}}{{ - 5k - 2}} \\
\]
Now taking first and second parts of the above equation, we get
\[
\Rightarrow \dfrac{1}{{k + 1}} = \dfrac{{k + 1}}{9} \\
\Rightarrow 9 = \left( {k + 1} \right)\left( {k + 1} \right) \\
\]
We can write 9 as \[{3^2}\]. So, we have
\[ \Rightarrow {\left( {k + 1} \right)^2} = {3^2}\]
Rooting on both sides, we have
\[
\Rightarrow \left( {k + 1} \right) = 3 \\
\Rightarrow k = 3 - 1 \\
\therefore k = 2 \\
\]
Thus, the required value of \[k\] is 2.
Note:
The condition for the system equations \[{a_1}x + {b_1}y + {c_1} = 0\] and \[{a_2}x + {b_2}y + {c_2} = 0\] to have infinitely many solutions is \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\] and the condition to have unique solution is \[\dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}\].
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
