
Find the value of k for the given expression \[\left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right) = \sqrt k \]
Answer
547.5k+ views
Hint: The given question deals with the concept of trigonometry. In order to solve this question we will take use trigonometric identity related to cot theta i.e., \[\cot (A + B) = \dfrac{{\cot A \times \cot B - 1}}{{\cot B + \cot A}}\]. We will assume \[\cot A = \cot 22^\circ \]and \[\cot B = \cot 23^\circ \] put these values in the trigonometric identity and solve it until we reach a conclusion.
Complete step by step solution:
Given that, \[\left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right) = \sqrt k \]
We know that \[22^\circ + 23^\circ = 45^\circ \]
We have the given expression in cot theta, therefore we use identity related to cot theta i.e., \[\cot (A + B) = \dfrac{{\cot A \times \cot B - 1}}{{\cot B + \cot A}} - - - - - (1)\].
Now, let us assume, \[\cot A = \cot 22^\circ \]and \[\cot B = \cot 23^\circ \]
Here, put these values into the trigonometric identity above (1)
Thus, we have,
\[\cot \left( {22^\circ + 23^\circ } \right) = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}\]
Which is,
\[ \Rightarrow 1 = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}\]
As we know \[\cot 45^\circ = 1\] from the trigonometric table of values.Simplifying the above expression we get,
\[ \Rightarrow \cot 23^\circ + \cot 22^\circ = \cot 22^\circ \times \cot 23^\circ - 1\]
\[ \Rightarrow 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ \]
Now, we add 1 to both the sides of the above expression
\[ \Rightarrow 1 + 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ + 1\]
Rearranging the above expression further we get,
\[ \Rightarrow 2 = \cot 22^\circ \times \cot 23^\circ - \cot 22^\circ + 1 - \cot 23^\circ \]
Here, we take \[ - \cot 22^\circ \] common from the RHS of the above expression
We get,
\[ \Rightarrow 2 = - \cot 22^\circ \left( { - \cot 23^\circ + 1} \right) + \left( {1 - \cot 23^\circ } \right)\]
Further, taking the common factor from the above expression we get,
\[ \Rightarrow 2 = \left( { - \cot 23^\circ + 1} \right)\left( {1 - \cot 22^\circ } \right)\]
Rearranging the above expression
We get,
\[ \therefore 2 = \left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right)\]
We know, \[\sqrt 4 = 2\] therefore, the value of k is 4.
Hence, the value of $k$ is $4$.
Note: The value of cot is listed in the standard trigonometric table of values. Trigonometric table consists of trigonometric ratios from 0 degrees to 360 degrees. These trigonometric ratios are:
Sine= Hypotenuse by base
Cosine= Base by hypotenuse
Tangent= Perpendicular by base
The other three ratios are cosecant, secant and cotangent and they are reciprocal to the above listed ratios respectively. The trigonometric table is as follows:
Here, the value of cot theta we have used to solve the above question is derived from the above table.
Complete step by step solution:
Given that, \[\left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right) = \sqrt k \]
We know that \[22^\circ + 23^\circ = 45^\circ \]
We have the given expression in cot theta, therefore we use identity related to cot theta i.e., \[\cot (A + B) = \dfrac{{\cot A \times \cot B - 1}}{{\cot B + \cot A}} - - - - - (1)\].
Now, let us assume, \[\cot A = \cot 22^\circ \]and \[\cot B = \cot 23^\circ \]
Here, put these values into the trigonometric identity above (1)
Thus, we have,
\[\cot \left( {22^\circ + 23^\circ } \right) = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}\]
Which is,
\[ \Rightarrow 1 = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}\]
As we know \[\cot 45^\circ = 1\] from the trigonometric table of values.Simplifying the above expression we get,
\[ \Rightarrow \cot 23^\circ + \cot 22^\circ = \cot 22^\circ \times \cot 23^\circ - 1\]
\[ \Rightarrow 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ \]
Now, we add 1 to both the sides of the above expression
\[ \Rightarrow 1 + 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ + 1\]
Rearranging the above expression further we get,
\[ \Rightarrow 2 = \cot 22^\circ \times \cot 23^\circ - \cot 22^\circ + 1 - \cot 23^\circ \]
Here, we take \[ - \cot 22^\circ \] common from the RHS of the above expression
We get,
\[ \Rightarrow 2 = - \cot 22^\circ \left( { - \cot 23^\circ + 1} \right) + \left( {1 - \cot 23^\circ } \right)\]
Further, taking the common factor from the above expression we get,
\[ \Rightarrow 2 = \left( { - \cot 23^\circ + 1} \right)\left( {1 - \cot 22^\circ } \right)\]
Rearranging the above expression
We get,
\[ \therefore 2 = \left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right)\]
We know, \[\sqrt 4 = 2\] therefore, the value of k is 4.
Hence, the value of $k$ is $4$.
Note: The value of cot is listed in the standard trigonometric table of values. Trigonometric table consists of trigonometric ratios from 0 degrees to 360 degrees. These trigonometric ratios are:
Sine= Hypotenuse by base
Cosine= Base by hypotenuse
Tangent= Perpendicular by base
The other three ratios are cosecant, secant and cotangent and they are reciprocal to the above listed ratios respectively. The trigonometric table is as follows:
| Angle in degrees | 0 | 30 | 45 | 60 | 90 | 180 | 270 | 360 |
| Sine | \[0\] | \[\dfrac{1}{2}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{{\sqrt 3 }}{2}\] | \[1\] | \[0\] | \[ - 1\] | \[0\] |
| Cosine | \[1\] | \[\dfrac{{\sqrt 3 }}{2}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{1}{2}\] | \[0\] | \[ - 1\] | \[0\] | \[1\] |
| Tangent | \[0\] | \[\dfrac{1}{{\sqrt 3 }}\] | \[1\] | \[\sqrt 3 \] | Not defined | \[0\] | Not defined | 1 |
| Cosecant | Not defined | \[2\] | \[\sqrt 2 \] | \[\dfrac{2}{{\sqrt 3 }}\] | \[1\] | Not defined | \[ - 1\] | Not defined |
| Secant | \[1\] | \[\dfrac{2}{{\sqrt 3 }}\] | \[\sqrt 2 \] | \[2\] | Not defined | \[ - 1\] | Not defined | \[1\] |
| cotangent | Not defined | \[\sqrt 3 \] | \[1\] | \[\dfrac{1}{{\sqrt 3 }}\] | \[0\] | Not defined | \[0\] | Not defined |
Here, the value of cot theta we have used to solve the above question is derived from the above table.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

