
Find the value of k for the given expression \[\left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right) = \sqrt k \]
Answer
532.2k+ views
Hint: The given question deals with the concept of trigonometry. In order to solve this question we will take use trigonometric identity related to cot theta i.e., \[\cot (A + B) = \dfrac{{\cot A \times \cot B - 1}}{{\cot B + \cot A}}\]. We will assume \[\cot A = \cot 22^\circ \]and \[\cot B = \cot 23^\circ \] put these values in the trigonometric identity and solve it until we reach a conclusion.
Complete step by step solution:
Given that, \[\left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right) = \sqrt k \]
We know that \[22^\circ + 23^\circ = 45^\circ \]
We have the given expression in cot theta, therefore we use identity related to cot theta i.e., \[\cot (A + B) = \dfrac{{\cot A \times \cot B - 1}}{{\cot B + \cot A}} - - - - - (1)\].
Now, let us assume, \[\cot A = \cot 22^\circ \]and \[\cot B = \cot 23^\circ \]
Here, put these values into the trigonometric identity above (1)
Thus, we have,
\[\cot \left( {22^\circ + 23^\circ } \right) = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}\]
Which is,
\[ \Rightarrow 1 = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}\]
As we know \[\cot 45^\circ = 1\] from the trigonometric table of values.Simplifying the above expression we get,
\[ \Rightarrow \cot 23^\circ + \cot 22^\circ = \cot 22^\circ \times \cot 23^\circ - 1\]
\[ \Rightarrow 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ \]
Now, we add 1 to both the sides of the above expression
\[ \Rightarrow 1 + 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ + 1\]
Rearranging the above expression further we get,
\[ \Rightarrow 2 = \cot 22^\circ \times \cot 23^\circ - \cot 22^\circ + 1 - \cot 23^\circ \]
Here, we take \[ - \cot 22^\circ \] common from the RHS of the above expression
We get,
\[ \Rightarrow 2 = - \cot 22^\circ \left( { - \cot 23^\circ + 1} \right) + \left( {1 - \cot 23^\circ } \right)\]
Further, taking the common factor from the above expression we get,
\[ \Rightarrow 2 = \left( { - \cot 23^\circ + 1} \right)\left( {1 - \cot 22^\circ } \right)\]
Rearranging the above expression
We get,
\[ \therefore 2 = \left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right)\]
We know, \[\sqrt 4 = 2\] therefore, the value of k is 4.
Hence, the value of $k$ is $4$.
Note: The value of cot is listed in the standard trigonometric table of values. Trigonometric table consists of trigonometric ratios from 0 degrees to 360 degrees. These trigonometric ratios are:
Sine= Hypotenuse by base
Cosine= Base by hypotenuse
Tangent= Perpendicular by base
The other three ratios are cosecant, secant and cotangent and they are reciprocal to the above listed ratios respectively. The trigonometric table is as follows:
Here, the value of cot theta we have used to solve the above question is derived from the above table.
Complete step by step solution:
Given that, \[\left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right) = \sqrt k \]
We know that \[22^\circ + 23^\circ = 45^\circ \]
We have the given expression in cot theta, therefore we use identity related to cot theta i.e., \[\cot (A + B) = \dfrac{{\cot A \times \cot B - 1}}{{\cot B + \cot A}} - - - - - (1)\].
Now, let us assume, \[\cot A = \cot 22^\circ \]and \[\cot B = \cot 23^\circ \]
Here, put these values into the trigonometric identity above (1)
Thus, we have,
\[\cot \left( {22^\circ + 23^\circ } \right) = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}\]
Which is,
\[ \Rightarrow 1 = \dfrac{{\cot 22^\circ \times \cot 23^\circ - 1}}{{\cot 23^\circ + \cot 22^\circ }}\]
As we know \[\cot 45^\circ = 1\] from the trigonometric table of values.Simplifying the above expression we get,
\[ \Rightarrow \cot 23^\circ + \cot 22^\circ = \cot 22^\circ \times \cot 23^\circ - 1\]
\[ \Rightarrow 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ \]
Now, we add 1 to both the sides of the above expression
\[ \Rightarrow 1 + 1 = \cot 22^\circ \times \cot 23^\circ - \cot 23^\circ - \cot 22^\circ + 1\]
Rearranging the above expression further we get,
\[ \Rightarrow 2 = \cot 22^\circ \times \cot 23^\circ - \cot 22^\circ + 1 - \cot 23^\circ \]
Here, we take \[ - \cot 22^\circ \] common from the RHS of the above expression
We get,
\[ \Rightarrow 2 = - \cot 22^\circ \left( { - \cot 23^\circ + 1} \right) + \left( {1 - \cot 23^\circ } \right)\]
Further, taking the common factor from the above expression we get,
\[ \Rightarrow 2 = \left( { - \cot 23^\circ + 1} \right)\left( {1 - \cot 22^\circ } \right)\]
Rearranging the above expression
We get,
\[ \therefore 2 = \left( {1 - \cot 22^\circ } \right)\left( {1 - \cot 23^\circ } \right)\]
We know, \[\sqrt 4 = 2\] therefore, the value of k is 4.
Hence, the value of $k$ is $4$.
Note: The value of cot is listed in the standard trigonometric table of values. Trigonometric table consists of trigonometric ratios from 0 degrees to 360 degrees. These trigonometric ratios are:
Sine= Hypotenuse by base
Cosine= Base by hypotenuse
Tangent= Perpendicular by base
The other three ratios are cosecant, secant and cotangent and they are reciprocal to the above listed ratios respectively. The trigonometric table is as follows:
| Angle in degrees | 0 | 30 | 45 | 60 | 90 | 180 | 270 | 360 |
| Sine | \[0\] | \[\dfrac{1}{2}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{{\sqrt 3 }}{2}\] | \[1\] | \[0\] | \[ - 1\] | \[0\] |
| Cosine | \[1\] | \[\dfrac{{\sqrt 3 }}{2}\] | \[\dfrac{1}{{\sqrt 2 }}\] | \[\dfrac{1}{2}\] | \[0\] | \[ - 1\] | \[0\] | \[1\] |
| Tangent | \[0\] | \[\dfrac{1}{{\sqrt 3 }}\] | \[1\] | \[\sqrt 3 \] | Not defined | \[0\] | Not defined | 1 |
| Cosecant | Not defined | \[2\] | \[\sqrt 2 \] | \[\dfrac{2}{{\sqrt 3 }}\] | \[1\] | Not defined | \[ - 1\] | Not defined |
| Secant | \[1\] | \[\dfrac{2}{{\sqrt 3 }}\] | \[\sqrt 2 \] | \[2\] | Not defined | \[ - 1\] | Not defined | \[1\] |
| cotangent | Not defined | \[\sqrt 3 \] | \[1\] | \[\dfrac{1}{{\sqrt 3 }}\] | \[0\] | Not defined | \[0\] | Not defined |
Here, the value of cot theta we have used to solve the above question is derived from the above table.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

