
Find the value of
(i)$\sin {{120}^{\circ }}$
(ii)$\cos (-{{300}^{\circ }})$
Answer
605.4k+ views
Hint: Here, $\sin {{120}^{\circ }}$ can be written as $\sin {{120}^{{}^\circ }}=\sin ({{90}^{\circ }}+{{30}^{\circ }})$ or $\sin {{120}^{{}^\circ }}=\sin ({{180}^{\circ }}-{{60}^{\circ }})$ and $\cos (-{{300}^{{}^\circ }})=\cos ({{300}^{{}^\circ }})$ can be written as $\cos ({{300}^{{}^\circ }})=\cos ({{180}^{\circ }}+{{120}^{\circ }})$, then apply the formulas:
$\begin{align}
& \sin (A+B)=\sin A\cos B+\cos A\sin B \\
& \sin (A-B)=\sin A\cos B-\cos A\sin B \\
& \cos (A+B)=\cos A\cos B-\sin A\sin B \\
& \cos (A-B)=\cos A\cos B+\sin A\sin B \\
\end{align}$
Complete step-by-step answer:
(i) $\sin {{120}^{\circ }}$
Here, we can write:
$\sin {{120}^{{}^\circ }}=\sin ({{90}^{\circ }}+{{30}^{\circ }})\text{ }.....\text{ (1)}$
The above equation is of the form $\sin (A+B)$ where $A={{90}^{\circ }}$ and $B={{30}^{\circ }}$ We have the formula:
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
By applying the formula we get:
$\Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\sin {{90}^{\circ }}\cos {{30}^{\circ }}+\cos {{90}^{\circ }}\sin {{30}^{\circ }}$
Since, we know that:
$\begin{align}
& \sin {{90}^{\circ }}=1 \\
& \cos {{90}^{\circ }}=0 \\
& \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Our equation becomes:
$\begin{align}
& \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=1\times \dfrac{\sqrt{3}}{2}+0\times \dfrac{1}{2} \\
& \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\dfrac{\sqrt{3}}{2}+0 \\
& \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\dfrac{\sqrt{3}}{2}\text{ }.....\text{ (2)} \\
\end{align}$
Hence, by substituting equation (2) in equation (1) we obtain:
$\sin {{120}^{{}^\circ }}=\dfrac{\sqrt{3}}{2}$
OR
Alternatively, you can also prove this by applying the formula:
$\sin ({{90}^{\circ }}+A)=\cos A$.
Therefore, we will get:
$\Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\cos {{30}^{\circ }}$
We know that $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Hence, we will get:
$\begin{align}
& \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
OR
We can also write $\sin {{120}^{\circ }}$as,
$\sin {{120}^{{}^\circ }}=\sin ({{180}^{\circ }}-{{60}^{\circ }})$
The above equation is of the form $\sin (A+B)$ where $A={{90}^{\circ }}$ and $B={{30}^{\circ }}$, we have the formula:
$\sin (A-B)=\sin A\cos B-\cos A\sin B$
By applying the above formula we get:
$\Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=\sin {{180}^{\circ }}\cos {{60}^{\circ }}-\cos {{180}^{\circ }}\sin {{60}^{\circ }}\text{ }.....\text{ (4)}$
Next, we have to find $\sin {{180}^{\circ }}$ and $\cos {{180}^{\circ }}$
Now we can write:
$\sin {{180}^{\circ }}=\sin ({{90}^{\circ }}+{{90}^{\circ }})$
We know that $\sin ({{90}^{\circ }}+A)=\cos A$
Therefore, by applying this we will get:
$\begin{align}
& \sin {{180}^{\circ }}=\sin ({{90}^{\circ }}+{{90}^{\circ }})=\cos {{90}^{\circ }} \\
& \Rightarrow \sin {{180}^{\circ }}=\cos {{90}^{\circ }} \\
\end{align}$
Since, $\cos {{90}^{\circ }}=0$, we can say that
$\sin {{180}^{\circ }}=0$.
Similarly, we can write:
$\cos {{180}^{\circ }}=\cos ({{90}^{\circ }}+{{90}^{\circ }})$
We know that:
$\cos ({{90}^{\circ }}+A)=-\sin A$.
Therefore, by applying this we will get:
$\begin{align}
& \Rightarrow \cos {{180}^{\circ }}=\cos ({{90}^{\circ }}+{{90}^{\circ }}) \\
& \Rightarrow \cos {{180}^{\circ }}=-\sin {{90}^{\circ }} \\
\end{align}$
We have,
$\sin {{90}^{\circ }}=1$
Therefore, we will get:
$\Rightarrow \cos {{180}^{\circ }}=-1$
Therefore, we have:
$\begin{align}
& \cos {{60}^{\circ }}=\dfrac{1}{2} \\
& \text{sin}{{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
$\sin {{180}^{\circ }}=0$
$\cos {{180}^{\circ }}=-1$
By substituting all the above values in equation (4) we obtain:
$\begin{align}
& \Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=0\times \dfrac{1}{2}-(-1)\times \dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=0+\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Hence, we can say that $\sin {{120}^{{}^\circ }}=\dfrac{\sqrt{3}}{2}$.
$\cos \left( -{{300}^{\circ }} \right)$.
Next, we have to find the value of $\cos \left( -{{300}^{\circ }} \right)$
We know that,
$\cos (-A)=\cos A$
Therefore, we can write:
$\cos (-{{300}^{\circ }})=\cos ({{300}^{\circ }})$
Now, we can write:
$\cos ({{300}^{\circ }})=\cos ({{180}^{\circ }}+{{120}^{\circ }})$
The above equation is of the form $\cos (A+B)$ where $A={{180}^{\circ }}$ and $B={{120}^{\circ }}$. By expansion we have:
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
By applying the formula we get:
$\cos ({{180}^{\circ }}+{{120}^{\circ }})=\cos {{180}^{\circ }}\cos {{120}^{\circ }}-\sin {{180}^{\circ }}\sin {{120}^{\circ }}\text{ }....\text{ (5)}$
Now, we have to find, $\cos {{120}^{\circ }}$.
$\cos {{120}^{\circ }}=\cos ({{90}^{\circ }}+{{30}^{\circ }})$
We know that $\cos ({{90}^{\circ }}+A)=-\sin {{90}^{\circ }}$.
Therefore, we can say that:
$\begin{align}
& \cos ({{90}^{\circ }}+{{30}^{\circ }})=-\sin {{30}^{\circ }} \\
& \Rightarrow \cos {{120}^{\circ }}=-\sin {{30}^{\circ }} \\
\end{align}$
We have $\sin {{30}^{\circ }}=\dfrac{1}{2}$.
Therefore, we will get:
$\cos {{120}^{\circ }}=-\dfrac{1}{2}$
We know that:
$\begin{align}
& \cos {{180}^{\circ }}=-1 \\
& \text{sin18}{{0}^{\circ }}=0 \\
& \text{sin}{{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \cos {{120}^{\circ }}=-\dfrac{1}{2} \\
\end{align}$
By applying all these values in equation (5) we obtain:
$\begin{align}
& \cos ({{180}^{\circ }}+{{120}^{\circ }})=-1\times -\dfrac{1}{2}-0\times \dfrac{\sqrt{3}}{2} \\
& \cos ({{180}^{\circ }}+{{120}^{\circ }})=\dfrac{1}{2} \\
& \cos ({{300}^{\circ }})=\dfrac{1}{2} \\
\end{align}$
Therefore, we can say that $\cos (-{{300}^{\circ }})=\dfrac{1}{2}$.
Note: Here, for finding $\cos ({{300}^{\circ }})$ you can also apply the formula $\cos ({{360}^{\circ }}-{{60}^{\circ }})=\cos {{60}^{\circ }}=\dfrac{1}{2}$
Instead of expanding $\cos ({{180}^{\circ }}+{{120}^{\circ }})$ if you know the formula, you can directly write:
$\begin{align}
& \cos ({{180}^{\circ }}+{{120}^{\circ }})=-\cos {{120}^{\circ }} \\
& \Rightarrow \cos ({{180}^{\circ }}+{{120}^{\circ }})=-\left( -\dfrac{1}{2} \right) \\
& \Rightarrow \cos ({{180}^{\circ }}+{{120}^{\circ }})=\dfrac{1}{2} \\
\end{align}$.
$\begin{align}
& \sin (A+B)=\sin A\cos B+\cos A\sin B \\
& \sin (A-B)=\sin A\cos B-\cos A\sin B \\
& \cos (A+B)=\cos A\cos B-\sin A\sin B \\
& \cos (A-B)=\cos A\cos B+\sin A\sin B \\
\end{align}$
Complete step-by-step answer:
(i) $\sin {{120}^{\circ }}$
Here, we can write:
$\sin {{120}^{{}^\circ }}=\sin ({{90}^{\circ }}+{{30}^{\circ }})\text{ }.....\text{ (1)}$
The above equation is of the form $\sin (A+B)$ where $A={{90}^{\circ }}$ and $B={{30}^{\circ }}$ We have the formula:
$\sin (A+B)=\sin A\cos B+\cos A\sin B$
By applying the formula we get:
$\Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\sin {{90}^{\circ }}\cos {{30}^{\circ }}+\cos {{90}^{\circ }}\sin {{30}^{\circ }}$
Since, we know that:
$\begin{align}
& \sin {{90}^{\circ }}=1 \\
& \cos {{90}^{\circ }}=0 \\
& \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Our equation becomes:
$\begin{align}
& \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=1\times \dfrac{\sqrt{3}}{2}+0\times \dfrac{1}{2} \\
& \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\dfrac{\sqrt{3}}{2}+0 \\
& \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\dfrac{\sqrt{3}}{2}\text{ }.....\text{ (2)} \\
\end{align}$
Hence, by substituting equation (2) in equation (1) we obtain:
$\sin {{120}^{{}^\circ }}=\dfrac{\sqrt{3}}{2}$
OR
Alternatively, you can also prove this by applying the formula:
$\sin ({{90}^{\circ }}+A)=\cos A$.
Therefore, we will get:
$\Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\cos {{30}^{\circ }}$
We know that $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Hence, we will get:
$\begin{align}
& \Rightarrow \sin ({{90}^{\circ }}+{{30}^{\circ }})=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
OR
We can also write $\sin {{120}^{\circ }}$as,
$\sin {{120}^{{}^\circ }}=\sin ({{180}^{\circ }}-{{60}^{\circ }})$
The above equation is of the form $\sin (A+B)$ where $A={{90}^{\circ }}$ and $B={{30}^{\circ }}$, we have the formula:
$\sin (A-B)=\sin A\cos B-\cos A\sin B$
By applying the above formula we get:
$\Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=\sin {{180}^{\circ }}\cos {{60}^{\circ }}-\cos {{180}^{\circ }}\sin {{60}^{\circ }}\text{ }.....\text{ (4)}$
Next, we have to find $\sin {{180}^{\circ }}$ and $\cos {{180}^{\circ }}$
Now we can write:
$\sin {{180}^{\circ }}=\sin ({{90}^{\circ }}+{{90}^{\circ }})$
We know that $\sin ({{90}^{\circ }}+A)=\cos A$
Therefore, by applying this we will get:
$\begin{align}
& \sin {{180}^{\circ }}=\sin ({{90}^{\circ }}+{{90}^{\circ }})=\cos {{90}^{\circ }} \\
& \Rightarrow \sin {{180}^{\circ }}=\cos {{90}^{\circ }} \\
\end{align}$
Since, $\cos {{90}^{\circ }}=0$, we can say that
$\sin {{180}^{\circ }}=0$.
Similarly, we can write:
$\cos {{180}^{\circ }}=\cos ({{90}^{\circ }}+{{90}^{\circ }})$
We know that:
$\cos ({{90}^{\circ }}+A)=-\sin A$.
Therefore, by applying this we will get:
$\begin{align}
& \Rightarrow \cos {{180}^{\circ }}=\cos ({{90}^{\circ }}+{{90}^{\circ }}) \\
& \Rightarrow \cos {{180}^{\circ }}=-\sin {{90}^{\circ }} \\
\end{align}$
We have,
$\sin {{90}^{\circ }}=1$
Therefore, we will get:
$\Rightarrow \cos {{180}^{\circ }}=-1$
Therefore, we have:
$\begin{align}
& \cos {{60}^{\circ }}=\dfrac{1}{2} \\
& \text{sin}{{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
$\sin {{180}^{\circ }}=0$
$\cos {{180}^{\circ }}=-1$
By substituting all the above values in equation (4) we obtain:
$\begin{align}
& \Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=0\times \dfrac{1}{2}-(-1)\times \dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=0+\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin ({{180}^{\circ }}-{{60}^{\circ }})=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Hence, we can say that $\sin {{120}^{{}^\circ }}=\dfrac{\sqrt{3}}{2}$.
$\cos \left( -{{300}^{\circ }} \right)$.
Next, we have to find the value of $\cos \left( -{{300}^{\circ }} \right)$
We know that,
$\cos (-A)=\cos A$
Therefore, we can write:
$\cos (-{{300}^{\circ }})=\cos ({{300}^{\circ }})$
Now, we can write:
$\cos ({{300}^{\circ }})=\cos ({{180}^{\circ }}+{{120}^{\circ }})$
The above equation is of the form $\cos (A+B)$ where $A={{180}^{\circ }}$ and $B={{120}^{\circ }}$. By expansion we have:
$\cos (A+B)=\cos A\cos B-\sin A\sin B$
By applying the formula we get:
$\cos ({{180}^{\circ }}+{{120}^{\circ }})=\cos {{180}^{\circ }}\cos {{120}^{\circ }}-\sin {{180}^{\circ }}\sin {{120}^{\circ }}\text{ }....\text{ (5)}$
Now, we have to find, $\cos {{120}^{\circ }}$.
$\cos {{120}^{\circ }}=\cos ({{90}^{\circ }}+{{30}^{\circ }})$
We know that $\cos ({{90}^{\circ }}+A)=-\sin {{90}^{\circ }}$.
Therefore, we can say that:
$\begin{align}
& \cos ({{90}^{\circ }}+{{30}^{\circ }})=-\sin {{30}^{\circ }} \\
& \Rightarrow \cos {{120}^{\circ }}=-\sin {{30}^{\circ }} \\
\end{align}$
We have $\sin {{30}^{\circ }}=\dfrac{1}{2}$.
Therefore, we will get:
$\cos {{120}^{\circ }}=-\dfrac{1}{2}$
We know that:
$\begin{align}
& \cos {{180}^{\circ }}=-1 \\
& \text{sin18}{{0}^{\circ }}=0 \\
& \text{sin}{{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \cos {{120}^{\circ }}=-\dfrac{1}{2} \\
\end{align}$
By applying all these values in equation (5) we obtain:
$\begin{align}
& \cos ({{180}^{\circ }}+{{120}^{\circ }})=-1\times -\dfrac{1}{2}-0\times \dfrac{\sqrt{3}}{2} \\
& \cos ({{180}^{\circ }}+{{120}^{\circ }})=\dfrac{1}{2} \\
& \cos ({{300}^{\circ }})=\dfrac{1}{2} \\
\end{align}$
Therefore, we can say that $\cos (-{{300}^{\circ }})=\dfrac{1}{2}$.
Note: Here, for finding $\cos ({{300}^{\circ }})$ you can also apply the formula $\cos ({{360}^{\circ }}-{{60}^{\circ }})=\cos {{60}^{\circ }}=\dfrac{1}{2}$
Instead of expanding $\cos ({{180}^{\circ }}+{{120}^{\circ }})$ if you know the formula, you can directly write:
$\begin{align}
& \cos ({{180}^{\circ }}+{{120}^{\circ }})=-\cos {{120}^{\circ }} \\
& \Rightarrow \cos ({{180}^{\circ }}+{{120}^{\circ }})=-\left( -\dfrac{1}{2} \right) \\
& \Rightarrow \cos ({{180}^{\circ }}+{{120}^{\circ }})=\dfrac{1}{2} \\
\end{align}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

