
Find the value of inverse trigonometric function ${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right]$ where $0 < x < \dfrac{\pi }{2}$.
$
{\text{A}}{\text{. }}\dfrac{x}{2} \\
{\text{B}}{\text{. }}\dfrac{\pi }{2} - 2x \\
{\text{C}}{\text{. }}2\pi - x \\
{\text{D}}{\text{. }}\pi - \dfrac{x}{2} \\
$
Answer
618.9k+ views
Hint: Here, we will convert the term inside the inverse cotangent function i.e., $\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}$ in terms of cotangent function of some angle and then we will use the formula ${\cot ^{ - 1}}\left[ {\cot \theta } \right] = \theta $ in order to obtain the value of the required expression.
Complete step-by-step answer:
Let us suppose the function $y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{\text{ }} \to {\text{(1)}}$.
In order to rationalize the function given in the RHS of equation (1), we will multiply and divide the RHS with the term$\left[ {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right]$. Now, equation (1) becomes
\[
y = \left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \times \left[ {\dfrac{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \\
\Rightarrow y = \left[ {\dfrac{{\left( {\sqrt {1 - \sin x} + \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} - {{\left( {\sqrt {1 + \sin x} } \right)}^2}}}{{{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}^2}}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{1 - \sin x - \left( {1 + \sin x} \right)}}{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} + {{\left( {\sqrt {1 + \sin x} } \right)}^2} - 2\left( {\sqrt {1 - \sin x} } \right)\left( {\sqrt {1 + \sin x} } \right)}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{1 - \sin x - 1 - \sin x}}{{1 - \sin x + 1 + \sin x - 2\left[ {\sqrt {\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)} } \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2 - 2\left[ {\sqrt {1 - \sin x + \sin x - {{\left( {\sin x} \right)}^2}} } \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \sqrt {1 - {{\left( {\sin x} \right)}^2}} } \right]}}} \right]{\text{ }} \to {\text{(1)}} \\
\]
As we know that ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1$
$
\Rightarrow {\left( {\cos x} \right)^2} = 1 - {\left( {\sin x} \right)^2} \\
\Rightarrow \cos x = \sqrt {1 - {{\left( {\sin x} \right)}^2}} {\text{ }} \to {\text{(2)}} \\
$
By substituting the equation (2) in equation (1), we get
\[
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \cos x} \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - \sin x}}{{1 - \cos x}}} \right]{\text{ }} \to (3) \\
\]
Also, we know that $\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(4)}}$ and $
\cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} \\
\Rightarrow 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} = 1 - \cos x{\text{ }} \to {\text{(5)}} \\
$
By substituting the equations (4) and (5) in equation (3), we get
\[
\Rightarrow y = \left[ {\dfrac{{ - 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{2{{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]}^2}}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - \cos \left( {\dfrac{x}{2}} \right)}}{{\sin \left( {\dfrac{x}{2}} \right)}}} \right] \\
\Rightarrow y = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(6)}} \\
\]
Also, $
\cot \left( {\pi - \theta } \right) = - \cot \theta \\
\Rightarrow \cot \left( {\pi - \dfrac{x}{2}} \right) = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(7)}} \\
$
Using the equation (7) in equation (6), we get
$ \Rightarrow y = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(8)}}$
According to the equations (1) and (8), we get
$y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }} = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(9)}}$
Using equation (9) in order to obtain the value of the expression needed, we get
${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = {\cot ^{ - 1}}\left[ {\cot \left( {\pi - \dfrac{x}{2}} \right)} \right]$
By using the formula i.e., ${\cot ^{ - 1}}\left[ {\cot \theta } \right] = \theta $, above equation becomes
${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = \left( {\pi - \dfrac{x}{2}} \right)$
Hence, option D is correct.
Note: In this particular problem, we have used the formula $\sin 2\theta = 2\sin \theta \cos \theta $ and replaced angle $\theta $ with $\dfrac{x}{2}$ in order to get $\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)$ and also we have use the formula $\cos 2\theta = 1 - 2{\left[ {\sin \theta } \right]^2}$ and replaced angle $\theta $ with $\dfrac{x}{2}$ in order to get $\cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2}$.
Complete step-by-step answer:
Let us suppose the function $y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{\text{ }} \to {\text{(1)}}$.
In order to rationalize the function given in the RHS of equation (1), we will multiply and divide the RHS with the term$\left[ {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right]$. Now, equation (1) becomes
\[
y = \left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \times \left[ {\dfrac{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \\
\Rightarrow y = \left[ {\dfrac{{\left( {\sqrt {1 - \sin x} + \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} - {{\left( {\sqrt {1 + \sin x} } \right)}^2}}}{{{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}^2}}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{1 - \sin x - \left( {1 + \sin x} \right)}}{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} + {{\left( {\sqrt {1 + \sin x} } \right)}^2} - 2\left( {\sqrt {1 - \sin x} } \right)\left( {\sqrt {1 + \sin x} } \right)}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{1 - \sin x - 1 - \sin x}}{{1 - \sin x + 1 + \sin x - 2\left[ {\sqrt {\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)} } \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2 - 2\left[ {\sqrt {1 - \sin x + \sin x - {{\left( {\sin x} \right)}^2}} } \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \sqrt {1 - {{\left( {\sin x} \right)}^2}} } \right]}}} \right]{\text{ }} \to {\text{(1)}} \\
\]
As we know that ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1$
$
\Rightarrow {\left( {\cos x} \right)^2} = 1 - {\left( {\sin x} \right)^2} \\
\Rightarrow \cos x = \sqrt {1 - {{\left( {\sin x} \right)}^2}} {\text{ }} \to {\text{(2)}} \\
$
By substituting the equation (2) in equation (1), we get
\[
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \cos x} \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - \sin x}}{{1 - \cos x}}} \right]{\text{ }} \to (3) \\
\]
Also, we know that $\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(4)}}$ and $
\cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} \\
\Rightarrow 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} = 1 - \cos x{\text{ }} \to {\text{(5)}} \\
$
By substituting the equations (4) and (5) in equation (3), we get
\[
\Rightarrow y = \left[ {\dfrac{{ - 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{2{{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]}^2}}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - \cos \left( {\dfrac{x}{2}} \right)}}{{\sin \left( {\dfrac{x}{2}} \right)}}} \right] \\
\Rightarrow y = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(6)}} \\
\]
Also, $
\cot \left( {\pi - \theta } \right) = - \cot \theta \\
\Rightarrow \cot \left( {\pi - \dfrac{x}{2}} \right) = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(7)}} \\
$
Using the equation (7) in equation (6), we get
$ \Rightarrow y = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(8)}}$
According to the equations (1) and (8), we get
$y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }} = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(9)}}$
Using equation (9) in order to obtain the value of the expression needed, we get
${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = {\cot ^{ - 1}}\left[ {\cot \left( {\pi - \dfrac{x}{2}} \right)} \right]$
By using the formula i.e., ${\cot ^{ - 1}}\left[ {\cot \theta } \right] = \theta $, above equation becomes
${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = \left( {\pi - \dfrac{x}{2}} \right)$
Hence, option D is correct.
Note: In this particular problem, we have used the formula $\sin 2\theta = 2\sin \theta \cos \theta $ and replaced angle $\theta $ with $\dfrac{x}{2}$ in order to get $\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)$ and also we have use the formula $\cos 2\theta = 1 - 2{\left[ {\sin \theta } \right]^2}$ and replaced angle $\theta $ with $\dfrac{x}{2}$ in order to get $\cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

