
Find the value of inverse trigonometric function ${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right]$ where $0 < x < \dfrac{\pi }{2}$.
$
{\text{A}}{\text{. }}\dfrac{x}{2} \\
{\text{B}}{\text{. }}\dfrac{\pi }{2} - 2x \\
{\text{C}}{\text{. }}2\pi - x \\
{\text{D}}{\text{. }}\pi - \dfrac{x}{2} \\
$
Answer
521.4k+ views
Hint: Here, we will convert the term inside the inverse cotangent function i.e., $\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}$ in terms of cotangent function of some angle and then we will use the formula ${\cot ^{ - 1}}\left[ {\cot \theta } \right] = \theta $ in order to obtain the value of the required expression.
Complete step-by-step answer:
Let us suppose the function $y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{\text{ }} \to {\text{(1)}}$.
In order to rationalize the function given in the RHS of equation (1), we will multiply and divide the RHS with the term$\left[ {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right]$. Now, equation (1) becomes
\[
y = \left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \times \left[ {\dfrac{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \\
\Rightarrow y = \left[ {\dfrac{{\left( {\sqrt {1 - \sin x} + \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} - {{\left( {\sqrt {1 + \sin x} } \right)}^2}}}{{{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}^2}}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{1 - \sin x - \left( {1 + \sin x} \right)}}{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} + {{\left( {\sqrt {1 + \sin x} } \right)}^2} - 2\left( {\sqrt {1 - \sin x} } \right)\left( {\sqrt {1 + \sin x} } \right)}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{1 - \sin x - 1 - \sin x}}{{1 - \sin x + 1 + \sin x - 2\left[ {\sqrt {\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)} } \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2 - 2\left[ {\sqrt {1 - \sin x + \sin x - {{\left( {\sin x} \right)}^2}} } \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \sqrt {1 - {{\left( {\sin x} \right)}^2}} } \right]}}} \right]{\text{ }} \to {\text{(1)}} \\
\]
As we know that ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1$
$
\Rightarrow {\left( {\cos x} \right)^2} = 1 - {\left( {\sin x} \right)^2} \\
\Rightarrow \cos x = \sqrt {1 - {{\left( {\sin x} \right)}^2}} {\text{ }} \to {\text{(2)}} \\
$
By substituting the equation (2) in equation (1), we get
\[
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \cos x} \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - \sin x}}{{1 - \cos x}}} \right]{\text{ }} \to (3) \\
\]
Also, we know that $\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(4)}}$ and $
\cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} \\
\Rightarrow 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} = 1 - \cos x{\text{ }} \to {\text{(5)}} \\
$
By substituting the equations (4) and (5) in equation (3), we get
\[
\Rightarrow y = \left[ {\dfrac{{ - 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{2{{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]}^2}}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - \cos \left( {\dfrac{x}{2}} \right)}}{{\sin \left( {\dfrac{x}{2}} \right)}}} \right] \\
\Rightarrow y = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(6)}} \\
\]
Also, $
\cot \left( {\pi - \theta } \right) = - \cot \theta \\
\Rightarrow \cot \left( {\pi - \dfrac{x}{2}} \right) = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(7)}} \\
$
Using the equation (7) in equation (6), we get
$ \Rightarrow y = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(8)}}$
According to the equations (1) and (8), we get
$y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }} = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(9)}}$
Using equation (9) in order to obtain the value of the expression needed, we get
${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = {\cot ^{ - 1}}\left[ {\cot \left( {\pi - \dfrac{x}{2}} \right)} \right]$
By using the formula i.e., ${\cot ^{ - 1}}\left[ {\cot \theta } \right] = \theta $, above equation becomes
${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = \left( {\pi - \dfrac{x}{2}} \right)$
Hence, option D is correct.
Note: In this particular problem, we have used the formula $\sin 2\theta = 2\sin \theta \cos \theta $ and replaced angle $\theta $ with $\dfrac{x}{2}$ in order to get $\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)$ and also we have use the formula $\cos 2\theta = 1 - 2{\left[ {\sin \theta } \right]^2}$ and replaced angle $\theta $ with $\dfrac{x}{2}$ in order to get $\cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2}$.
Complete step-by-step answer:
Let us suppose the function $y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{\text{ }} \to {\text{(1)}}$.
In order to rationalize the function given in the RHS of equation (1), we will multiply and divide the RHS with the term$\left[ {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right]$. Now, equation (1) becomes
\[
y = \left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \times \left[ {\dfrac{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] \\
\Rightarrow y = \left[ {\dfrac{{\left( {\sqrt {1 - \sin x} + \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} - {{\left( {\sqrt {1 + \sin x} } \right)}^2}}}{{{{\left( {\sqrt {1 - \sin x} - \sqrt {1 + \sin x} } \right)}^2}}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{1 - \sin x - \left( {1 + \sin x} \right)}}{{{{\left( {\sqrt {1 - \sin x} } \right)}^2} + {{\left( {\sqrt {1 + \sin x} } \right)}^2} - 2\left( {\sqrt {1 - \sin x} } \right)\left( {\sqrt {1 + \sin x} } \right)}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{1 - \sin x - 1 - \sin x}}{{1 - \sin x + 1 + \sin x - 2\left[ {\sqrt {\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)} } \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2 - 2\left[ {\sqrt {1 - \sin x + \sin x - {{\left( {\sin x} \right)}^2}} } \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \sqrt {1 - {{\left( {\sin x} \right)}^2}} } \right]}}} \right]{\text{ }} \to {\text{(1)}} \\
\]
As we know that ${\left( {\sin x} \right)^2} + {\left( {\cos x} \right)^2} = 1$
$
\Rightarrow {\left( {\cos x} \right)^2} = 1 - {\left( {\sin x} \right)^2} \\
\Rightarrow \cos x = \sqrt {1 - {{\left( {\sin x} \right)}^2}} {\text{ }} \to {\text{(2)}} \\
$
By substituting the equation (2) in equation (1), we get
\[
\Rightarrow y = \left[ {\dfrac{{ - 2\sin x}}{{2\left[ {1 - \cos x} \right]}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - \sin x}}{{1 - \cos x}}} \right]{\text{ }} \to (3) \\
\]
Also, we know that $\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(4)}}$ and $
\cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} \\
\Rightarrow 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2} = 1 - \cos x{\text{ }} \to {\text{(5)}} \\
$
By substituting the equations (4) and (5) in equation (3), we get
\[
\Rightarrow y = \left[ {\dfrac{{ - 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)}}{{2{{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]}^2}}}} \right] \\
\Rightarrow y = \left[ {\dfrac{{ - \cos \left( {\dfrac{x}{2}} \right)}}{{\sin \left( {\dfrac{x}{2}} \right)}}} \right] \\
\Rightarrow y = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(6)}} \\
\]
Also, $
\cot \left( {\pi - \theta } \right) = - \cot \theta \\
\Rightarrow \cot \left( {\pi - \dfrac{x}{2}} \right) = - \cot \left( {\dfrac{x}{2}} \right){\text{ }} \to {\text{(7)}} \\
$
Using the equation (7) in equation (6), we get
$ \Rightarrow y = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(8)}}$
According to the equations (1) and (8), we get
$y = \dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }} = \cot \left( {\pi - \dfrac{x}{2}} \right){\text{ }} \to {\text{(9)}}$
Using equation (9) in order to obtain the value of the expression needed, we get
${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = {\cot ^{ - 1}}\left[ {\cot \left( {\pi - \dfrac{x}{2}} \right)} \right]$
By using the formula i.e., ${\cot ^{ - 1}}\left[ {\cot \theta } \right] = \theta $, above equation becomes
${\cot ^{ - 1}}\left[ {\dfrac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}} \right] = \left( {\pi - \dfrac{x}{2}} \right)$
Hence, option D is correct.
Note: In this particular problem, we have used the formula $\sin 2\theta = 2\sin \theta \cos \theta $ and replaced angle $\theta $ with $\dfrac{x}{2}$ in order to get $\sin x = 2\sin \left( {\dfrac{x}{2}} \right)\cos \left( {\dfrac{x}{2}} \right)$ and also we have use the formula $\cos 2\theta = 1 - 2{\left[ {\sin \theta } \right]^2}$ and replaced angle $\theta $ with $\dfrac{x}{2}$ in order to get $\cos x = 1 - 2{\left[ {\sin \left( {\dfrac{x}{2}} \right)} \right]^2}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
