
Find the value of $\int\limits_{ - 2}^2 {\min \left\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\}dx} $ and choose the correct option from the given options below. (Where $\left[ . \right]$denotes the greatest integer function.)
A) $\dfrac{1}{2}$
B) $1$
C) $\dfrac{3}{2}$
D) $2$
Answer
504.6k+ views
Hint: To find the value of a given integral first we need to express the given function to integrate into the suitable form such that it is easy to integrate. Now we need to express the $x - \left[ x \right]$into $\left\{ x \right\}$ and then divide the given interval to integrate into the suitable intervals.
Formulas Used:
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_o^a {f\left( x \right)dx} $ if $f\left( x \right) = f\left( { - x} \right)$,
$\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} $,
$\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_{ - a}^0 {f\left( x \right)dx} + \int\limits_o^a {f\left( x \right)dx} $
Complete step by step answer:
Let us take,
$f\left( x \right) = \min \left\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\},g\left( x \right) = x - \left[ x \right]$
Observe that, $g\left( x \right) = \left\{ x \right\}$. Since $x - \left[ x \right] = \left\{ x \right\}$.
Consider,
$g\left( { - x} \right) = - x - \left[ { - x} \right] = \left\{ { - x} \right\}$.
We know that,
$$\left\{ x \right\} = x$$ in interval $\left( {0,1} \right)$, and
$$\left\{ { - x} \right\} = 1 - \left\{ x \right\}$$.
Now clearly,
$f\left( x \right) = \min \left\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\} = \min \left\{ {\left\{ x \right\},\left\{ { - x} \right\}} \right\}$,
$ \Rightarrow f\left( x \right) = \min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}$
On further simplification, we get
$f= x, x \leqslant 0.5$
$f= 1-x, x$>$0.5$
Observe that, $f\left( x \right) = f\left( { - x} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\int\limits_0^2 {f\left( x \right)dx} $
Now let's split the $\left( {0,2} \right)$into $\left( {0,1} \right) + \left( {1,2} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\{ {\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} } \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\{ {\int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} + \int\limits_1^2 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}$
Observe, $$f\left( x \right) = f\left( {x + 1} \right)$$
$ \Rightarrow f\left( {\left( {0,1} \right)} \right) = f\left( {\left( {1,2} \right)} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\{ {\int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} + \int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\{ {2\left\{ {\int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}} \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}$
Now let’s split the interval $\left( {0,1} \right)$ to $\left( {0,0.5} \right) + \left( {0.5,1} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\int\limits_0^{0.5} {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} + \int\limits_{0.5}^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\int\limits_0^{0.5} {\left\{ x \right\}dx} + \int\limits_{0.5}^1 {1 - \left\{ x \right\}dx} } \right\}$
We have, $$\left\{ x \right\} = x$$in the interval $\left( {0,1} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\int\limits_0^{0.5} {xdx} + \int\limits_{0.5}^1 {1 - xdx} } \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\left[ {\dfrac{{{x^2}}}{2}} \right]_0^{0.5} + \left[ {x - \dfrac{{{x^2}}}{2}} \right]_{0.5}^1} \right\}$
By applying the limits, we get
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\dfrac{{1 - \dfrac{1}{4}}}{2} + \left[ {\dfrac{1}{2} - 1 - \dfrac{{1 - \dfrac{1}{4}}}{2}} \right]} \right\}$$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\dfrac{{\dfrac{1}{4} - 0}}{2} + \left[ {1 - \dfrac{1}{2} - \dfrac{{1 - \dfrac{1}{4}}}{2}} \right]} \right\}$
On further simplifications, we get
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\dfrac{1}{4}} \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 1$
So, the value of $\int\limits_{ - 2}^2 {\min \left\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\}dx} $ is 1.
Therefore, the correct option is (B).
Additional Information:
Proof of $\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $ if $f\left( x \right) = f\left( { - x} \right)$
We have,
$\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_{ - a}^0 {f\left( x \right)dx} + \int\limits_o^a {f\left( x \right)dx} $
Consider,$\int\limits_{ - a}^0 {f\left( x \right)dx} $
Replace $$x$$ with $$ - x$$ in $\int\limits_{ - a}^0 {f\left( x \right)dx} $.
We get,
$\int\limits_{ - a}^0 {f\left( x \right)dx} = - \int\limits_a^0 {f\left( { - x} \right)dx} $
$ \Rightarrow \int\limits_{ - a}^0 {f\left( x \right)dx} = - \int\limits_a^0 {f\left( x \right)dx} $. Since $f\left( x \right) = f\left( { - x} \right)$
$ \Rightarrow \int\limits_{ - a}^0 {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} $. Since $\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} $
Therefore, $\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_o^a {f\left( x \right)dx} $
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_o^a {f\left( x \right)dx} $
Hence Proved.
Note:
We can solve this problem in many ways. We have to be careful while solving this type of sums because when we divide the interval there is a high possibility that we are making mistakes and we have to be careful while calculating the greatest integer functions and fractional part functions. Here also there is a high chance of making mistakes. We have to be careful while calculating. Also by making mistakes in the calculations also we can get the wrong answer.
Formulas Used:
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_o^a {f\left( x \right)dx} $ if $f\left( x \right) = f\left( { - x} \right)$,
$\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} $,
$\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_{ - a}^0 {f\left( x \right)dx} + \int\limits_o^a {f\left( x \right)dx} $
Complete step by step answer:
Let us take,
$f\left( x \right) = \min \left\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\},g\left( x \right) = x - \left[ x \right]$
Observe that, $g\left( x \right) = \left\{ x \right\}$. Since $x - \left[ x \right] = \left\{ x \right\}$.
Consider,
$g\left( { - x} \right) = - x - \left[ { - x} \right] = \left\{ { - x} \right\}$.
We know that,
$$\left\{ x \right\} = x$$ in interval $\left( {0,1} \right)$, and
$$\left\{ { - x} \right\} = 1 - \left\{ x \right\}$$.
Now clearly,
$f\left( x \right) = \min \left\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\} = \min \left\{ {\left\{ x \right\},\left\{ { - x} \right\}} \right\}$,
$ \Rightarrow f\left( x \right) = \min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}$
On further simplification, we get
$f= x, x \leqslant 0.5$
$f= 1-x, x$>$0.5$
Observe that, $f\left( x \right) = f\left( { - x} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\int\limits_0^2 {f\left( x \right)dx} $
Now let's split the $\left( {0,2} \right)$into $\left( {0,1} \right) + \left( {1,2} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\{ {\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} } \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\{ {\int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} + \int\limits_1^2 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}$
Observe, $$f\left( x \right) = f\left( {x + 1} \right)$$
$ \Rightarrow f\left( {\left( {0,1} \right)} \right) = f\left( {\left( {1,2} \right)} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\{ {\int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} + \int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 2\left\{ {2\left\{ {\int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}} \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\int\limits_0^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}$
Now let’s split the interval $\left( {0,1} \right)$ to $\left( {0,0.5} \right) + \left( {0.5,1} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\int\limits_0^{0.5} {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} + \int\limits_{0.5}^1 {\min \left\{ {\left\{ x \right\},1 - \left\{ x \right\}} \right\}dx} } \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\int\limits_0^{0.5} {\left\{ x \right\}dx} + \int\limits_{0.5}^1 {1 - \left\{ x \right\}dx} } \right\}$
We have, $$\left\{ x \right\} = x$$in the interval $\left( {0,1} \right)$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\int\limits_0^{0.5} {xdx} + \int\limits_{0.5}^1 {1 - xdx} } \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\left[ {\dfrac{{{x^2}}}{2}} \right]_0^{0.5} + \left[ {x - \dfrac{{{x^2}}}{2}} \right]_{0.5}^1} \right\}$
By applying the limits, we get
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\dfrac{{1 - \dfrac{1}{4}}}{2} + \left[ {\dfrac{1}{2} - 1 - \dfrac{{1 - \dfrac{1}{4}}}{2}} \right]} \right\}$$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\dfrac{{\dfrac{1}{4} - 0}}{2} + \left[ {1 - \dfrac{1}{2} - \dfrac{{1 - \dfrac{1}{4}}}{2}} \right]} \right\}$
On further simplifications, we get
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4\left\{ {\dfrac{1}{4}} \right\}$
$ \Rightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 1$
So, the value of $\int\limits_{ - 2}^2 {\min \left\{ {x - \left[ x \right], - x - \left[ { - x} \right]} \right\}dx} $ is 1.
Therefore, the correct option is (B).
Additional Information:
Proof of $\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_0^a {f\left( x \right)dx} $ if $f\left( x \right) = f\left( { - x} \right)$
We have,
$\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_{ - a}^0 {f\left( x \right)dx} + \int\limits_o^a {f\left( x \right)dx} $
Consider,$\int\limits_{ - a}^0 {f\left( x \right)dx} $
Replace $$x$$ with $$ - x$$ in $\int\limits_{ - a}^0 {f\left( x \right)dx} $.
We get,
$\int\limits_{ - a}^0 {f\left( x \right)dx} = - \int\limits_a^0 {f\left( { - x} \right)dx} $
$ \Rightarrow \int\limits_{ - a}^0 {f\left( x \right)dx} = - \int\limits_a^0 {f\left( x \right)dx} $. Since $f\left( x \right) = f\left( { - x} \right)$
$ \Rightarrow \int\limits_{ - a}^0 {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} $. Since $\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} $
Therefore, $\int\limits_{ - a}^a {f\left( x \right)dx} = \int\limits_0^a {f\left( x \right)dx} + \int\limits_o^a {f\left( x \right)dx} $
$\int\limits_{ - a}^a {f\left( x \right)dx} = 2\int\limits_o^a {f\left( x \right)dx} $
Hence Proved.
Note:
We can solve this problem in many ways. We have to be careful while solving this type of sums because when we divide the interval there is a high possibility that we are making mistakes and we have to be careful while calculating the greatest integer functions and fractional part functions. Here also there is a high chance of making mistakes. We have to be careful while calculating. Also by making mistakes in the calculations also we can get the wrong answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

