
Find the value of $\int {x\log (1 - {x^2})} dx$.
Answer
592.2k+ views
Hint: The problem can be solved with the Substitution method. We have to substitute $(1 - {x^2}) = t$. Further, the integration of $\log x$ is $x\log x - x + c$ , where c is the constant of integration.
Complete step-by-step answer:
Substitute t at the place of $(1 - {x^2})$ in $\int {x\log (1 - {x^2})} dx$
If, $(1 - {x^2}) = t$
Then, differentiating both sides with respect to $t$, we get
$
\Rightarrow \dfrac{{d(1 - {x^2})}}{{dt}} = dt \\
\Rightarrow - 2xdx = dt \\
\Rightarrow xdx = - \dfrac{{dt}}{2} \\
$
Putting above value in $\int {x\log (1 - {x^2})} dx$, we get
$
\Rightarrow \int { - \log t\dfrac{{dt}}{2}} \\
\Rightarrow - \dfrac{1}{2}\int {\log tdt} \\
$
Further we know $\int {\log t = t\log t - t + c} $ where c is the constant of integration.
$ \Rightarrow - \dfrac{1}{2}\int {\log tdt} = - \dfrac{1}{2}(t\log t - t + c)$
Putting the value $t = (1 - {x^2})$ in above equation, we get
$
\Rightarrow - \dfrac{1}{2}(t\log t - t + c) \\
\Rightarrow - \dfrac{1}{2}((1 - {x^2})\log (1 - {x^2}) - (1 - {x^2}) + c) \\
$
Note: Additional Information, $\int {\log xdx} $ can be calculated by the Integration using the parts.
As, We know that $\int {f(x)g(x)dx = f(x)\int {g(x)} } dx - \int {\left( {f'(x} \right)} \int {g\left( x \right)} dx)dx$
Here, $f(x) = \log x$ and $g(x) = 1$
$
\Rightarrow \int {(\log x)} 1dx = \log x\int {1.dx - \int {(\dfrac{{d(\log x)}}{{dx}}} } \int {1.dx)dx} \\
= (\log x)x - \int {\dfrac{1}{x}} .x.dx \\
= x\log x - \int {1.dx} \\
= x\log x - x + c \\
$
where c is the constant of integration.
Complete step-by-step answer:
Substitute t at the place of $(1 - {x^2})$ in $\int {x\log (1 - {x^2})} dx$
If, $(1 - {x^2}) = t$
Then, differentiating both sides with respect to $t$, we get
$
\Rightarrow \dfrac{{d(1 - {x^2})}}{{dt}} = dt \\
\Rightarrow - 2xdx = dt \\
\Rightarrow xdx = - \dfrac{{dt}}{2} \\
$
Putting above value in $\int {x\log (1 - {x^2})} dx$, we get
$
\Rightarrow \int { - \log t\dfrac{{dt}}{2}} \\
\Rightarrow - \dfrac{1}{2}\int {\log tdt} \\
$
Further we know $\int {\log t = t\log t - t + c} $ where c is the constant of integration.
$ \Rightarrow - \dfrac{1}{2}\int {\log tdt} = - \dfrac{1}{2}(t\log t - t + c)$
Putting the value $t = (1 - {x^2})$ in above equation, we get
$
\Rightarrow - \dfrac{1}{2}(t\log t - t + c) \\
\Rightarrow - \dfrac{1}{2}((1 - {x^2})\log (1 - {x^2}) - (1 - {x^2}) + c) \\
$
Note: Additional Information, $\int {\log xdx} $ can be calculated by the Integration using the parts.
As, We know that $\int {f(x)g(x)dx = f(x)\int {g(x)} } dx - \int {\left( {f'(x} \right)} \int {g\left( x \right)} dx)dx$
Here, $f(x) = \log x$ and $g(x) = 1$
$
\Rightarrow \int {(\log x)} 1dx = \log x\int {1.dx - \int {(\dfrac{{d(\log x)}}{{dx}}} } \int {1.dx)dx} \\
= (\log x)x - \int {\dfrac{1}{x}} .x.dx \\
= x\log x - \int {1.dx} \\
= x\log x - x + c \\
$
where c is the constant of integration.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

