Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Find the value of $\int {\sin 3x.\cos 4x} dx$.

Answer
VerifiedVerified
559.8k+ views
Hint: This is a question of indefinite integration. Here we have to integrate $\sin 3x\cos 4x$ with respect to $dx$. Our basic aim is to write the term $\sin 3x\cos 4x$ as the sum of $\sin nx$ and $\cos nx$, so that its integration becomes simple. We have studied a trigonometric formula $\sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B$. Using this formula convert $\sin 3x\cos 4x$ into addition of two terms then integrate the individual terms with respect to $dx$ and then add them to get the required result.

Complete step-by-step answer:
Given: find the value of $\int {\sin 3x.\cos 4x} dx$.
Firstly, we have to convert $\sin 3x\cos 4x$ as the addition of two terms.
We have studied a famous trigonometric formula $\sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B$.
Putting $A = 3x$ and $B = 4x$ we get,
$
   \Rightarrow 2\sin 3x\cos 4x = \sin \left( {3x + 4x} \right) + \sin \left( {3x - 4x} \right) \\
   \Rightarrow \sin 3x\cos 4x = \dfrac{1}{2}\left( {\sin 7x + \sin \left( { - x} \right)} \right) \\
 $
We know that $\sin \left( { - \theta } \right) = - \sin \theta $ applying this. we get,
$
   \Rightarrow \sin 3x\cos 4x = \dfrac{1}{2}\left( {\sin 7x - \sin x} \right) \\
   \Rightarrow \sin 3x\cos 4x = \dfrac{1}{2}\sin 7x - \dfrac{1}{2}\sin x \\
 $
Now, $\int {\sin 3x.\cos 4x} dx$ can be written as $\int {\left( {\dfrac{1}{2}\sin 7x - \dfrac{1}{2}\sin x} \right)dx} $.
$ = \int {\dfrac{1}{2}\sin 7xdx} - \int {\dfrac{1}{2}\sin xdx} $
Since $\dfrac{1}{2}$ is a constant term so it can be taken out of both the integration.
\[ = \dfrac{1}{2}\left( {\int {\sin 7xdx} - \int {\sin xdx} } \right)\]- - - - - - - - - - - - - - - - - - - - - (1)
Now, take $7x = u$ then differentiating both side we get,
$7dx = du$
Now, by putting $7x = u$ and $dx = \dfrac{{du}}{7}$, we can write $\int {\sin 7xdx} $ as $\int {\sin u\left( {\dfrac{{du}}{7}} \right) = \dfrac{1}{7}\int {\sin udu} } $.
We know that integration of $\sin x$ with respect to $dx$ gives $ - \cos x$. That is $\int {\sin xdx = - \cos x} + c$.
Now, $\dfrac{1}{7}\int {\sin udu = \dfrac{1}{7}\left( { - \cos u} \right)} + c$
Putting $u = 7x$.
we get the value of $\int {\sin 7xdx} $ is $\dfrac{{ - 1}}{7}\cos 7x + c$.
And the value of $\int {\sin xdx} $ is $ - \cos x + c$.
Putting these values in equation (1) we get,
\[
   = \dfrac{1}{2}\left( {\int {\sin 7xdx} - \int {\sin xdx} } \right) \\
   = \dfrac{1}{2}\left( { - \dfrac{1}{7}\cos 7x + c - \cos x + c} \right) \\
   = - \dfrac{1}{{14}}\left( {\cos 7x + 7\cos x} \right) + c \\
 \]

Thus, the required value of $\int {\sin 3x.\cos 4x} dx$ is \[ - \dfrac{1}{{14}}\left( {\cos 7x + 7\cos x} \right) + c\].

Note:
If the value of this integration is to be calculated over limits them we have to simply put the upper limit in \[ - \dfrac{1}{{14}}\left( {\cos 7x + 7\cos x} \right)\,\] and then lower limits and the difference of these two gives the required results.